En géométrie différentielle, une application régulière définie d'une variété riemannienne dans une autre est dite harmonique lorsqu'elle est solution d'une certaine équation aux dérivées partielles généralisant l'équation de Laplace. L'équation des applications harmoniques est en général introduite pour résoudre un problème variationnel ; il s'agit de l'équation d'Euler-Lagrange associée à la recherche des points critiques de l'énergie de Dirichlet des applications entre les deux variétés. Par suite, la recherche des applications harmoniques englobe à la fois celle des géodésiques et celle des fonctions numériques qui sont harmoniques sur un ouvert de l'espace euclidien.

Property Value
dbo:abstract
  • En géométrie différentielle, une application régulière définie d'une variété riemannienne dans une autre est dite harmonique lorsqu'elle est solution d'une certaine équation aux dérivées partielles généralisant l'équation de Laplace. L'équation des applications harmoniques est en général introduite pour résoudre un problème variationnel ; il s'agit de l'équation d'Euler-Lagrange associée à la recherche des points critiques de l'énergie de Dirichlet des applications entre les deux variétés. Par suite, la recherche des applications harmoniques englobe à la fois celle des géodésiques et celle des fonctions numériques qui sont harmoniques sur un ouvert de l'espace euclidien. On peut concevoir de façon informelle l'énergie de Dirichlet de l'application Φ comme une mesure de l'étirement (au sens de la tension superficielle) qu'il faut imprimer pour amener les points de M à leur position dans N. Ainsi, étirer une bande de caoutchouc pour la placer sur un galet lisse peut servir d'expérience de pensée pour modéliser l'application des points de la bande au repos vers sa position finale, et son énergie. Une caractéristique de la position finale de la bande, et qui est l'expression du caractère harmonique de l'application, est qu'il s'agit d'une position d'équilibre : au premier ordre, pour toute déformation physique de la bande qu'on peut concevoir, la dérivée de l'énergie est nulle à l'instant initial. Les initiateurs de la théorie des fonctions harmoniques, James Eells et Joseph H. Sampson, ont montré en 1964 que, dans un contexte géométrique adéquat, une application régulière quelconque, pouvait être déformée par homotopie en une application harmonique. Les applications harmoniques l'étude du flot de la chaleur, par elles-mêmes et à titre d'inspiration, font partie des sujets les plus étudiés dans le domaine de l'analyse géométrique. Le travail de Eells et Sampson a notamment servi d'inspiration première à Richard S. Hamilton dans ses recherches sur le flot de Ricci, qui ont conduit à la preuve de la conjecture de Poincaré. La découverte du phénomène des « bulles » dans les suites de fonctions harmoniques, et l'introduction de méthodes pour les contrôler, par Jonathan Sacks et Karen Uhlenbeck, a revêtu une influence particulière, car des situations analogues ont été reconnues dans de nombreux autres contextes géométriques. Ainsi, la découverte concomitante par Uhlenbeck d'un phénomène de bulles pour les champs de Yang–Mills a joué un rôle important dans les travaux de Simon Donaldson sur les , et de même la découverte ultérieure par Mikhail Gromov de bulles pour les courbes pseudoholomorphes s'est révélé riche de conséquences en géométrie symplectique et en . De même, les techniques employées par Richard Schoen et Uhlenbeck pour étudier la régularité des applications harmoniques ont servi d'inspiration au développement de méthodes d'analyse nouvelle en analyse géométrique. (fr)
  • En géométrie différentielle, une application régulière définie d'une variété riemannienne dans une autre est dite harmonique lorsqu'elle est solution d'une certaine équation aux dérivées partielles généralisant l'équation de Laplace. L'équation des applications harmoniques est en général introduite pour résoudre un problème variationnel ; il s'agit de l'équation d'Euler-Lagrange associée à la recherche des points critiques de l'énergie de Dirichlet des applications entre les deux variétés. Par suite, la recherche des applications harmoniques englobe à la fois celle des géodésiques et celle des fonctions numériques qui sont harmoniques sur un ouvert de l'espace euclidien. On peut concevoir de façon informelle l'énergie de Dirichlet de l'application Φ comme une mesure de l'étirement (au sens de la tension superficielle) qu'il faut imprimer pour amener les points de M à leur position dans N. Ainsi, étirer une bande de caoutchouc pour la placer sur un galet lisse peut servir d'expérience de pensée pour modéliser l'application des points de la bande au repos vers sa position finale, et son énergie. Une caractéristique de la position finale de la bande, et qui est l'expression du caractère harmonique de l'application, est qu'il s'agit d'une position d'équilibre : au premier ordre, pour toute déformation physique de la bande qu'on peut concevoir, la dérivée de l'énergie est nulle à l'instant initial. Les initiateurs de la théorie des fonctions harmoniques, James Eells et Joseph H. Sampson, ont montré en 1964 que, dans un contexte géométrique adéquat, une application régulière quelconque, pouvait être déformée par homotopie en une application harmonique. Les applications harmoniques l'étude du flot de la chaleur, par elles-mêmes et à titre d'inspiration, font partie des sujets les plus étudiés dans le domaine de l'analyse géométrique. Le travail de Eells et Sampson a notamment servi d'inspiration première à Richard S. Hamilton dans ses recherches sur le flot de Ricci, qui ont conduit à la preuve de la conjecture de Poincaré. La découverte du phénomène des « bulles » dans les suites de fonctions harmoniques, et l'introduction de méthodes pour les contrôler, par Jonathan Sacks et Karen Uhlenbeck, a revêtu une influence particulière, car des situations analogues ont été reconnues dans de nombreux autres contextes géométriques. Ainsi, la découverte concomitante par Uhlenbeck d'un phénomène de bulles pour les champs de Yang–Mills a joué un rôle important dans les travaux de Simon Donaldson sur les , et de même la découverte ultérieure par Mikhail Gromov de bulles pour les courbes pseudoholomorphes s'est révélé riche de conséquences en géométrie symplectique et en . De même, les techniques employées par Richard Schoen et Uhlenbeck pour étudier la régularité des applications harmoniques ont servi d'inspiration au développement de méthodes d'analyse nouvelle en analyse géométrique. (fr)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 14095347 (xsd:integer)
dbo:wikiPageLength
  • 33867 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 186206065 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:année
  • 1994 (xsd:integer)
prop-fr:doi
  • 10.100700 (xsd:double)
prop-fr:issn
  • 944 (xsd:integer)
prop-fr:journal
  • Calculus of Variations and Partial Differential Equations (fr)
  • Calculus of Variations and Partial Differential Equations (fr)
prop-fr:mr
  • 1385525 (xsd:integer)
prop-fr:nom
  • Jost (fr)
  • Jost (fr)
prop-fr:numéro
  • 2 (xsd:integer)
prop-fr:pages
  • 173 (xsd:integer)
prop-fr:prénom
  • Jürgen (fr)
  • Jürgen (fr)
prop-fr:titre
  • Equilibrium maps between metric spaces (fr)
  • Equilibrium maps between metric spaces (fr)
prop-fr:volume
  • 2 (xsd:integer)
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • En géométrie différentielle, une application régulière définie d'une variété riemannienne dans une autre est dite harmonique lorsqu'elle est solution d'une certaine équation aux dérivées partielles généralisant l'équation de Laplace. L'équation des applications harmoniques est en général introduite pour résoudre un problème variationnel ; il s'agit de l'équation d'Euler-Lagrange associée à la recherche des points critiques de l'énergie de Dirichlet des applications entre les deux variétés. Par suite, la recherche des applications harmoniques englobe à la fois celle des géodésiques et celle des fonctions numériques qui sont harmoniques sur un ouvert de l'espace euclidien. (fr)
  • En géométrie différentielle, une application régulière définie d'une variété riemannienne dans une autre est dite harmonique lorsqu'elle est solution d'une certaine équation aux dérivées partielles généralisant l'équation de Laplace. L'équation des applications harmoniques est en général introduite pour résoudre un problème variationnel ; il s'agit de l'équation d'Euler-Lagrange associée à la recherche des points critiques de l'énergie de Dirichlet des applications entre les deux variétés. Par suite, la recherche des applications harmoniques englobe à la fois celle des géodésiques et celle des fonctions numériques qui sont harmoniques sur un ouvert de l'espace euclidien. (fr)
rdfs:label
  • Application harmonique (fr)
  • Harmonic map (en)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of