Un rayonnement, synonyme de radiation, désigne le processus d'émission ou de transmission d'énergie impliquant une onde, une particule.

PropertyValue
dbpedia-owl:abstract
  • Un rayonnement, synonyme de radiation, désigne le processus d'émission ou de transmission d'énergie impliquant une onde, une particule.
  • El fenómeno de la radiación consiste en la propagación de energía en forma de ondas electromagnéticas o partículas subatómicas a través del vacío o de un medio material.
  • Straling kan zijn elektromagnetische straling en deeltjesstraling; bij de laatste gaat het om deeltjes met een hoge snelheid die hoogstens de grootte van een atoomkern hebben. Vaak gaat het om een stroom van deeltjes, maar het kan ook gaan om zeldzame individuele deeltjes, zoals in het geval van kosmische straling, met een zeer hoge energie.Volgens hedendaagse kwantummechanische opvattingen is er overigens geen fundamenteel verschil tussen straling via golven en als deeltjes. Straling is energieoverdracht zonder dat er sprake is van direct contact.
  • Radyasyon veya Işınım, elektromanyetik dalgalar veya parçacıklar biçimindeki enerji yayımı ya da aktarımıdır. "Radyoaktif maddelerin alfa, beta, gama gibi ışınları yayması"na veya "Uzayda yayılan herhangi bir elektromanyetik ışını meydana getiren unsurların tamamı"na da radyasyon denir. Bir maddenin atom çekirdeğindeki nötronların sayısı, proton sayısına göre oldukça fazla ise; bu tür maddeler kararsız bir yapı göstermekte ve çekirdeğindeki nötronlar alfa, beta, gama gibi çeşitli ışınlar yaymak suretiyle parçalanmaktadırlar. Çevresine bu şekilde ışın saçarak parçalanan maddelere radyoaktif madde ("ışınımsal madde") denir.
  • Dalam fisika, radiasi mendeskripsikan setiap proses di mana energi bergerak melalui media atau melalui ruang, dan akhirnya diserap oleh benda lain. Orang awam sering menghubungkan kata radiasi ionisasi (misalnya, sebagaimana terjadi pada senjata nuklir, reaktor nuklir, dan zat radioaktif), tetapi juga dapat merujuk kepada radiasi elektromagnetik (yaitu, gelombang radio, cahaya inframerah, cahaya tampak, sinar ultra violet, dan X-ray), radiasi akustik, atau untuk proses lain yang lebih jelas. Apa yang membuat radiasi adalah bahwa energi memancarkan (yaitu, bergerak ke luar dalam garis lurus ke segala arah) dari suatu sumber. geometri ini secara alami mengarah pada sistem pengukuran dan unit fisik yang sama berlaku untuk semua jenis radiasi. Beberapa radiasi dapat berbahaya.
  • Излуче́ние — процесс испускания и распространения энергии в виде волн и частиц. электромагнитное излучение радиоизлучение видимый свет тепловое излучение ультрафиолетовое излучение микроволновое излучение рентгеновское излучение излучение Вавилова-Черенкова люминесценция ионизирующее излучение рентгеновское излучение радиоактивное излучение альфа-излучение бета-излучение гамма-излучение гравитационное излучение излучение Хокинга
  • Záření (radiace) označuje šíření energie prostorem (včetně vakua).
  • En física, radiació és l'emissió d'energia a l'espai en forma d'ones (electromagnètiques o gravitatòries) o bé en forma de partícules altament energètiques (neutrins, protons, ions, etc.).La radiació, pròpiament dita, es refereix a la transportada per ones electromagnètiques, en conseqüència, radiació electromagnètica. No obstant això, s'utilitza aquesta expressió també per referir-se al moviment de partícules a gran velocitat enmig, amb apreciable transport d'energia, que rep el nom de radiació corpuscular.Si el transport d'energia és prou elevat com per provocar ionització enmig circumdant, es parla de radiació ionitzant. Encara que no és del tot correcte, és habitual emprar la paraula radiació, per extrapolació, per referir-se a les radiacions ionitzants.Proposicions:Tots els cossos absorbeixen i emeten radiacions electromagnètiques quan el sistema de càrregues està accelerat.Quan un objecte està en equilibri tèrmic amb el medi, absorbeix i emet radiació amb el mateix ritme.Energia tèrmica radiada per unitat de temps: (Llei de Joseph Stefan)PrαT4on Pr és la potència i T la temperatura. Per tant la potència radiada és proporcional a la temperatura.I per tant: I = Pr = dQ / dt.
  • Em física, radiação é a propagação da energia. As radiações podem ser identificadas: Pelo elemento condutor de energia: Radiação eletromagnética - fótons. Radiação corpuscular - partículas (prótons, nêutrons, etc.) Radiação gravitacional - grávitons. Pela fonte de radiação: Radiação solar - causada pelo Sol. Radiação de Cerenkov - causada por partículas com a velocidade superior a da luz no meio. Radioatividade - núcleos instáveis. Pelos seus efeitos: Radiação ionizante - capaz de ionizar moléculas. Radiação não ionizante - incapaz de ionizar moléculas.Degradação de materiais por radiação Tipos de radiação: Radiação alfa Radiação beta Radiação gama Radiação X
  • 放射(ほうしゃ,英: radiation)は、粒子線(アルファ線、ベータ線など)や電磁波(光や熱なども含む)、重力波などが放出されること、または放出されたそのものをいう。かつては、輻射(ふくしゃ)とされていたが、戦後の当用漢字表に「輻」の字が含まれなかった。このため、当初はやむを得ず「ふく射」と表記されていたが、その後、「放射」と表現が変更された。なお、「輻」は現在の常用漢字にも含まれていない。
  • In physics, radiation is a process in which electromagnetic waves (EMR) travel through a vacuum or through matter-containing media; the existence of a medium to propagate the waves is not required. A different but related definition says radiation is a subset of these electromagnetic waves combined with a class of energetic subatomic particles with very high kinetic energies; these are called ionizing radiation, and the particles are termed particle radiation. Other sorts of waves, such as acoustic, seismic, hydraulic and so on are not usually considered to be forms of "radiation" in either sense. We will consider the first definition, and return to the second later.The word arises from the phenomenon of waves radiating (i.e., travel outward in all directions) from a source. This aspect leads to a system of measurements and physical units that are applicable to all types of radiation. Because such radiation expands as it passes through space, and as its energy is conserved (in vacuum), the power of all types of radiation radiating from a point source follows an inverse-square law in relation to the distance from its source. While it is most common that radiation may be emitted radially from a point source, such as a light-bulb filament or a microwave antenna, there are other modes of radiation. Some examples are radiation from a phosphorescent panel (chaotic), a laser beam (coherent), and emitted from a parabolic mirror (parallel), in which cases adherence to the inverse-square law is violated.EMR is energy transferred by waves of combined electric charge and magnetic monopole, capable of traveling through a vacuum and traveling at the universal speed of light in whatever media it is passing through; the speed is dependent on the media, and is fastest in vacuum. In quantum mechanics these waves have been shown to have particle structure as well as wave structure; these particles are called photons. EMR includes radio and microwave signals, infrared (radiant heat), visible light and ultraviolet, and x-rays and gamma rays. These are differentiated from one another by the frequency of the waves, which directly correlates with the energy carried in each type's photons. This is the first definition of radiation stated in the opening paragraph.Notice that the differentiation of radiation into the classes above is somewhat arbitrary. The classes overlap at the meeting points, and the distinctions are strictly man-made, not directly apparent in the physics of the waves under study. There is, for example, no difference between an X-ray and a gamma ray except a relative difference in frequency, and thus energy.This spectrum of radiant energy can be divided into ionizing and non-ionizing, according to whether it ionizes or does not ionize the atoms in ordinary chemical matter. Ionization is the removing of electrons from atoms, and it may be partial, in which the weaker held outer electrons are removed, grading upwards to removal of all electrons from an atom. The energy required to do this varies with the kinds of atoms and their physical state, such as temperature, chemical binding and so on. Some overlap of ionizing and non-ionizing radiation exists in the domain of ultraviolet where materials experience first simple thermal heating in the infrared and visible light, then excitation of electrons in "softer" UV, and then partial-to-total ionization as the energy increases with frequency. The second definition of radiation in the opening paragraph is used in reference to ionizing radiation in hard UV, x-rays, and gamma rays.Both ionizing and non-ionizing radiation can be harmful to organisms and can result in changes to the natural environment. In general, however, ionizing radiation is far more harmful to living organisms per unit of energy deposited than non-ionizing radiation, since the ions that are produced, even at low radiation powers, leave behind atoms which, due to charge imbalance, are eager to combine in semi-random ways with other atoms in the environment; these are called free radicals. Such random chemical action in a cell may result in anything from harmless reactions, to degradation of important structures in the cell, to killing it outright or triggering suicide (apoptosis), or modifying the DNA in harmful, but yet temporarily viable ways. By contrast, most non-ionizing radiation is harmful to organisms only in proportion to the thermal energy deposited (a prime example is microwaves generated in a microwave oven), and is conventionally considered harmless at low powers that do not produce a significant temperature rise. Ultraviolet radiation in some aspects occupies the overlap in a middle ground, as it has some features of both ionizing and non-ionizing radiation. Although nearly all of the ultraviolet spectrum that penetrates the Earth's atmosphere is non-ionizing, this radiation does far more damage to many molecules in biological systems than can be accounted for by heating effects, such as sunburn). These properties derive from ultraviolet's power to alter chemical bonds, even without having quite enough energy to ionize atoms.The question of harm to biological systems due to low-power ionizing and non-ionizing radiation is not settled. Controversy continues about possible non-heating effects of low-power non-ionizing radiation, such as non-heating microwave and radio wave exposure. Non-ionizing radiation is usually considered to have a safe lower limit, especially as thermal radiation is unavoidable and ubiquitous. By contrast, ionizing radiation is currently conservatively considered to have no completely safe lower limit, although at some energy levels, new exposures do not add appreciably to background radiation. The evidence that small amounts of some types of ionizing radiation might confer a net health benefit in some situations is called radiation hormesis.
  • In fisica, il termine radiazione viene generalmente utilizzato per indicare un insieme di fenomeni caratterizzato dal trasporto di energia nello spazio. Tipici esempi di radiazioni sono la luce ed il calore.
  • Promieniowanie – strumień cząstek lub fal wysyłanych przez ciało.Wytwarzanie promieniowania jest nazywane emisją. Pierwotnie pojęcie promieniowanie używano do promieni słonecznych. Potem do tych rodzajów wysyłanych cząsteczek i fal (bez wnikania w ich naturę), którego wąski strumień (promień patrz światło) rozchodząc się w przestrzeni może być traktowany jak linia w geometrii (nie rozdziela się).
  • Der Begriff Strahlung bezeichnet die Ausbreitung von Teilchen oder Wellen. Im ersten Fall spricht man von Teilchenstrahlung oder Korpuskularstrahlung, im zweiten von Wellenstrahlung.Die Unterscheidung zwischen Teilchen und Wellen ist historisch und hat als angenäherte, anschauliche Aussage nach wie vor Bedeutung. Jedoch hat nach heutiger Kenntnis jede Strahlung sowohl Teilchen- als auch Welleneigenschaften.
  • 방사선(放射線, 영어: radioactive rays)은 방사능을 가진 원자에서 발생하는 빛 또는 물질이다. 몸을 투과하면 분자와 공명하여 세포나 유전자를 파괴하거나 변형시킨다. 일반적인 노출은 인체에 해가 되지만 이를 집중하여 쬐면 종양 등을 파괴하고 유전자를 변형시킬수 있는 수단이 된다. 약한 상호 작용에 의해 원자가 붕괴하면서 나온다.
  • Лъчението представлява пренос на енергия под различни форми: на вълна (например електромагнитна вълна) или на частица (корпускула) (например алфа-частица), или и на двете едновременно (корпускуларно-вълнов дуализъм). Изразява се под формата на електромагнитно излъчване (радио вълни, инфрачервено, видима светлина, ултравиолетово, лазерно излъчване и други) или ядрена реакция. Във вакуума се излъчват най-различни лъчения. Характерен пример е преносът на светлина през Космоса идващ от Слънцето.Енергията се разпространява по прави линии във всички посоки. Тя се изпуска от едно тяло и се поглъща от друго.В някои изрази се използва като негов синоним думата радиация, която в българския език се възприема като онази част от лъчението, която е йонизираща (йонизиращо лъчение). Например под слънчева радиация на български би се разбралата излъчена енергия във вид на електромагнитно лъчение и поток от йонизиращо лъчение (във вид на елементарни частици).Използва се и терминът „топлинно лъчение“, като този пренос на енергия може да се извърши по два начина: с предаване на кинетичната енергия от една движеща се частица (в случая атом или молекула) на друга; или чрез излъчване на електромагнитно лъчение — в инфрачервената област.
dbpedia-owl:wikiPageExternalLink
dbpedia-owl:wikiPageID
  • 66817 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 2419 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 41 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 110538420 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • Un rayonnement, synonyme de radiation, désigne le processus d'émission ou de transmission d'énergie impliquant une onde, une particule.
  • El fenómeno de la radiación consiste en la propagación de energía en forma de ondas electromagnéticas o partículas subatómicas a través del vacío o de un medio material.
  • Излуче́ние — процесс испускания и распространения энергии в виде волн и частиц. электромагнитное излучение радиоизлучение видимый свет тепловое излучение ультрафиолетовое излучение микроволновое излучение рентгеновское излучение излучение Вавилова-Черенкова люминесценция ионизирующее излучение рентгеновское излучение радиоактивное излучение альфа-излучение бета-излучение гамма-излучение гравитационное излучение излучение Хокинга
  • Záření (radiace) označuje šíření energie prostorem (včetně vakua).
  • 放射(ほうしゃ,英: radiation)は、粒子線(アルファ線、ベータ線など)や電磁波(光や熱なども含む)、重力波などが放出されること、または放出されたそのものをいう。かつては、輻射(ふくしゃ)とされていたが、戦後の当用漢字表に「輻」の字が含まれなかった。このため、当初はやむを得ず「ふく射」と表記されていたが、その後、「放射」と表現が変更された。なお、「輻」は現在の常用漢字にも含まれていない。
  • In fisica, il termine radiazione viene generalmente utilizzato per indicare un insieme di fenomeni caratterizzato dal trasporto di energia nello spazio. Tipici esempi di radiazioni sono la luce ed il calore.
  • Promieniowanie – strumień cząstek lub fal wysyłanych przez ciało.Wytwarzanie promieniowania jest nazywane emisją. Pierwotnie pojęcie promieniowanie używano do promieni słonecznych. Potem do tych rodzajów wysyłanych cząsteczek i fal (bez wnikania w ich naturę), którego wąski strumień (promień patrz światło) rozchodząc się w przestrzeni może być traktowany jak linia w geometrii (nie rozdziela się).
  • Der Begriff Strahlung bezeichnet die Ausbreitung von Teilchen oder Wellen. Im ersten Fall spricht man von Teilchenstrahlung oder Korpuskularstrahlung, im zweiten von Wellenstrahlung.Die Unterscheidung zwischen Teilchen und Wellen ist historisch und hat als angenäherte, anschauliche Aussage nach wie vor Bedeutung. Jedoch hat nach heutiger Kenntnis jede Strahlung sowohl Teilchen- als auch Welleneigenschaften.
  • 방사선(放射線, 영어: radioactive rays)은 방사능을 가진 원자에서 발생하는 빛 또는 물질이다. 몸을 투과하면 분자와 공명하여 세포나 유전자를 파괴하거나 변형시킨다. 일반적인 노출은 인체에 해가 되지만 이를 집중하여 쬐면 종양 등을 파괴하고 유전자를 변형시킬수 있는 수단이 된다. 약한 상호 작용에 의해 원자가 붕괴하면서 나온다.
  • Лъчението представлява пренос на енергия под различни форми: на вълна (например електромагнитна вълна) или на частица (корпускула) (например алфа-частица), или и на двете едновременно (корпускуларно-вълнов дуализъм). Изразява се под формата на електромагнитно излъчване (радио вълни, инфрачервено, видима светлина, ултравиолетово, лазерно излъчване и други) или ядрена реакция. Във вакуума се излъчват най-различни лъчения.
  • Em física, radiação é a propagação da energia. As radiações podem ser identificadas: Pelo elemento condutor de energia: Radiação eletromagnética - fótons. Radiação corpuscular - partículas (prótons, nêutrons, etc.) Radiação gravitacional - grávitons. Pela fonte de radiação: Radiação solar - causada pelo Sol. Radiação de Cerenkov - causada por partículas com a velocidade superior a da luz no meio. Radioatividade - núcleos instáveis.
  • Dalam fisika, radiasi mendeskripsikan setiap proses di mana energi bergerak melalui media atau melalui ruang, dan akhirnya diserap oleh benda lain. Orang awam sering menghubungkan kata radiasi ionisasi (misalnya, sebagaimana terjadi pada senjata nuklir, reaktor nuklir, dan zat radioaktif), tetapi juga dapat merujuk kepada radiasi elektromagnetik (yaitu, gelombang radio, cahaya inframerah, cahaya tampak, sinar ultra violet, dan X-ray), radiasi akustik, atau untuk proses lain yang lebih jelas.
  • In physics, radiation is a process in which electromagnetic waves (EMR) travel through a vacuum or through matter-containing media; the existence of a medium to propagate the waves is not required. A different but related definition says radiation is a subset of these electromagnetic waves combined with a class of energetic subatomic particles with very high kinetic energies; these are called ionizing radiation, and the particles are termed particle radiation.
  • Straling kan zijn elektromagnetische straling en deeltjesstraling; bij de laatste gaat het om deeltjes met een hoge snelheid die hoogstens de grootte van een atoomkern hebben. Vaak gaat het om een stroom van deeltjes, maar het kan ook gaan om zeldzame individuele deeltjes, zoals in het geval van kosmische straling, met een zeer hoge energie.Volgens hedendaagse kwantummechanische opvattingen is er overigens geen fundamenteel verschil tussen straling via golven en als deeltjes.
  • Radyasyon veya Işınım, elektromanyetik dalgalar veya parçacıklar biçimindeki enerji yayımı ya da aktarımıdır. "Radyoaktif maddelerin alfa, beta, gama gibi ışınları yayması"na veya "Uzayda yayılan herhangi bir elektromanyetik ışını meydana getiren unsurların tamamı"na da radyasyon denir.
  • En física, radiació és l'emissió d'energia a l'espai en forma d'ones (electromagnètiques o gravitatòries) o bé en forma de partícules altament energètiques (neutrins, protons, ions, etc.).La radiació, pròpiament dita, es refereix a la transportada per ones electromagnètiques, en conseqüència, radiació electromagnètica.
rdfs:label
  • Rayonnement
  • Promieniowanie
  • Radiació
  • Radiación
  • Radiasi
  • Radiation
  • Radiazione
  • Radiação
  • Radyasyon
  • Strahlung
  • Straling
  • Záření
  • Излучение
  • Лъчение
  • 放射
  • 방사선
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageDisambiguates of
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of