Property |
Value |
dbo:abstract
|
- En analyse mathématique, le wronskien, nommé ainsi en l'honneur de Josef Hoëné-Wronski, est le déterminant d'une famille de solutions d'un système différentiel linéaire homogène y' = ay. À l'aide du wronskien, il est possible de déterminer si cette famille constitue une base de l'espace des solutions. En outre, même sans aucune information sur les solutions, l'équation d'évolution du wronskien est connue. Ceci donne une information quantitative précieuse et offre même une stratégie de résolution pour certaines équations différentielles. Le wronskien peut être également défini pour des équations différentielles linéaires d'ordre supérieur, puisqu'on peut les ramener à l'ordre 1. Il est notamment très utile à la résolution des équations différentielles linéaires homogènes scalaires d'ordre 2 : y" = ay' + by. (fr)
- En analyse mathématique, le wronskien, nommé ainsi en l'honneur de Josef Hoëné-Wronski, est le déterminant d'une famille de solutions d'un système différentiel linéaire homogène y' = ay. À l'aide du wronskien, il est possible de déterminer si cette famille constitue une base de l'espace des solutions. En outre, même sans aucune information sur les solutions, l'équation d'évolution du wronskien est connue. Ceci donne une information quantitative précieuse et offre même une stratégie de résolution pour certaines équations différentielles. Le wronskien peut être également défini pour des équations différentielles linéaires d'ordre supérieur, puisqu'on peut les ramener à l'ordre 1. Il est notamment très utile à la résolution des équations différentielles linéaires homogènes scalaires d'ordre 2 : y" = ay' + by. (fr)
|
dbo:namedAfter
| |
dbo:thumbnail
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 7116 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-fr:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- En analyse mathématique, le wronskien, nommé ainsi en l'honneur de Josef Hoëné-Wronski, est le déterminant d'une famille de solutions d'un système différentiel linéaire homogène y' = ay. À l'aide du wronskien, il est possible de déterminer si cette famille constitue une base de l'espace des solutions. En outre, même sans aucune information sur les solutions, l'équation d'évolution du wronskien est connue. Ceci donne une information quantitative précieuse et offre même une stratégie de résolution pour certaines équations différentielles. (fr)
- En analyse mathématique, le wronskien, nommé ainsi en l'honneur de Josef Hoëné-Wronski, est le déterminant d'une famille de solutions d'un système différentiel linéaire homogène y' = ay. À l'aide du wronskien, il est possible de déterminer si cette famille constitue une base de l'espace des solutions. En outre, même sans aucune information sur les solutions, l'équation d'évolution du wronskien est connue. Ceci donne une information quantitative précieuse et offre même une stratégie de résolution pour certaines équations différentielles. (fr)
|
rdfs:label
|
- Determinant van Wronski (nl)
- Wronski-Determinante (de)
- Wronskian (en)
- Wronskiano (es)
- Wronskiano (pt)
- Wronskien (fr)
- Wronskià (ca)
- Wrońskian (pl)
- Визначник Вронського (uk)
- ロンスキー行列式 (ja)
- 朗斯基行列式 (zh)
|
rdfs:seeAlso
| |
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:depiction
| |
foaf:isPrimaryTopicOf
| |
is dbo:knownFor
of | |
is dbo:wikiPageWikiLink
of | |
is prop-fr:renomméPour
of | |
is oa:hasTarget
of | |
is foaf:primaryTopic
of | |