Property |
Value |
dbo:abstract
|
- La transformée de Hadamard (aussi connue sous le nom de « transformée de Walsh-Hadamard ») est un exemple d'une classe généralisée d'une transformée de Fourier. Elle est nommée d'après le mathématicien français Jacques Hadamard et effectue une opération linéaire et involutive avec une matrice orthogonale et symétrique sur 2m nombres réels (ou complexes, bien que les matrices utilisées possèdent des coefficients réels).Ces matrices sont des matrices de Hadamard. La transformée de Hadamard peut être vue comme étant issue d'une transformée de Fourier discrète et s'avère être en fait l'équivalent d'une transformée de Fourier discrète multidimensionnelle d'une taille de 2×2×...×2×2. Elle décompose un vecteur arbitraire en entrée en une superposition de fonctions de Walsh. (fr)
- La transformée de Hadamard (aussi connue sous le nom de « transformée de Walsh-Hadamard ») est un exemple d'une classe généralisée d'une transformée de Fourier. Elle est nommée d'après le mathématicien français Jacques Hadamard et effectue une opération linéaire et involutive avec une matrice orthogonale et symétrique sur 2m nombres réels (ou complexes, bien que les matrices utilisées possèdent des coefficients réels).Ces matrices sont des matrices de Hadamard. La transformée de Hadamard peut être vue comme étant issue d'une transformée de Fourier discrète et s'avère être en fait l'équivalent d'une transformée de Fourier discrète multidimensionnelle d'une taille de 2×2×...×2×2. Elle décompose un vecteur arbitraire en entrée en une superposition de fonctions de Walsh. (fr)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 5672 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-fr:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- La transformée de Hadamard (aussi connue sous le nom de « transformée de Walsh-Hadamard ») est un exemple d'une classe généralisée d'une transformée de Fourier. Elle est nommée d'après le mathématicien français Jacques Hadamard et effectue une opération linéaire et involutive avec une matrice orthogonale et symétrique sur 2m nombres réels (ou complexes, bien que les matrices utilisées possèdent des coefficients réels).Ces matrices sont des matrices de Hadamard. (fr)
- La transformée de Hadamard (aussi connue sous le nom de « transformée de Walsh-Hadamard ») est un exemple d'une classe généralisée d'une transformée de Fourier. Elle est nommée d'après le mathématicien français Jacques Hadamard et effectue une opération linéaire et involutive avec une matrice orthogonale et symétrique sur 2m nombres réels (ou complexes, bien que les matrices utilisées possèdent des coefficients réels).Ces matrices sont des matrices de Hadamard. (fr)
|
rdfs:label
|
- Biến đổi Hadamard (vi)
- Transformée de Hadamard (fr)
- 阿达马变换 (zh)
- Biến đổi Hadamard (vi)
- Transformée de Hadamard (fr)
- 阿达马变换 (zh)
|
rdfs:seeAlso
| |
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is oa:hasTarget
of | |
is foaf:primaryTopic
of | |