En mathématiques, le théorème de Rademacher est un résultat d'analyse qui s'énonce ainsi : Soient A un ouvert de ℝn et f : A → ℝm une application lipschitzienne. Alors f est dérivable presque partout sur A.

Property Value
dbo:abstract
  • En mathématiques, le théorème de Rademacher est un résultat d'analyse qui s'énonce ainsi : Soient A un ouvert de ℝn et f : A → ℝm une application lipschitzienne. Alors f est dérivable presque partout sur A. Il se ramène évidemment au cas m = 1. Pour démontrer ensuite ce cas, on montre d'abord que pour tout vecteur unitaire v, f admet presque partout une dérivée dans la direction de v (on utilise pour cela qu'une fonction à variation bornée est dérivable presque partout, et le lemme de Fatou). On en déduit, en choisissant dans ℝn un ensemble dénombrable dense de directions, qu'il existe un ensemble de complémentaire négligeable sur lequel f est dérivable dans toutes ces directions et de dérivée donnée par son gradient. On montre pour finir que sur cet ensemble, f est dérivable. Cette dernière étape fait appel au théorème de différentiation de Lebesgue (qui s'applique à toute fonction absolument continue), mais utilise par ailleurs de façon cruciale que f est lipschitzienne. (fr)
  • En mathématiques, le théorème de Rademacher est un résultat d'analyse qui s'énonce ainsi : Soient A un ouvert de ℝn et f : A → ℝm une application lipschitzienne. Alors f est dérivable presque partout sur A. Il se ramène évidemment au cas m = 1. Pour démontrer ensuite ce cas, on montre d'abord que pour tout vecteur unitaire v, f admet presque partout une dérivée dans la direction de v (on utilise pour cela qu'une fonction à variation bornée est dérivable presque partout, et le lemme de Fatou). On en déduit, en choisissant dans ℝn un ensemble dénombrable dense de directions, qu'il existe un ensemble de complémentaire négligeable sur lequel f est dérivable dans toutes ces directions et de dérivée donnée par son gradient. On montre pour finir que sur cet ensemble, f est dérivable. Cette dernière étape fait appel au théorème de différentiation de Lebesgue (qui s'applique à toute fonction absolument continue), mais utilise par ailleurs de façon cruciale que f est lipschitzienne. (fr)
dbo:namedAfter
dbo:wikiPageID
  • 1278861 (xsd:integer)
dbo:wikiPageLength
  • 1492 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 159889747 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • En mathématiques, le théorème de Rademacher est un résultat d'analyse qui s'énonce ainsi : Soient A un ouvert de ℝn et f : A → ℝm une application lipschitzienne. Alors f est dérivable presque partout sur A. (fr)
  • En mathématiques, le théorème de Rademacher est un résultat d'analyse qui s'énonce ainsi : Soient A un ouvert de ℝn et f : A → ℝm une application lipschitzienne. Alors f est dérivable presque partout sur A. (fr)
rdfs:label
  • Rademacher's theorem (en)
  • Satz von Rademacher (de)
  • Stelling van Rademacher (nl)
  • Teorema de Rademacher (ca)
  • Teorema di Rademacher (it)
  • Théorème de Rademacher (fr)
  • Теорема Радемахера (uk)
  • ラーデマッヘルの定理 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of