Property |
Value |
dbo:abstract
|
- L'analyse de Floquet s'applique aux systèmes dynamiques lorsque la matrice d'avance d'état au point courant est périodique Elle permet de trouver une base de projection de la trajectoire dans laquelle chaque coordonnée est une trajectoire périodique amplifiée (ou atténuée) exponentiellement. Ceci permet de voir la trajectoire comme la superposition de modes (les vecteurs de Floquet) plus ou moins actifs selon la valeur du coefficient d'amplification (les multiplieurs de Floquet). Le théorème démontré par Gaston Floquet dit que : si est une matrice périodique de période minimale T et le système fondamental de solution associé à l'équation , alors il existe une matrice périodique inversible et une matrice constante telles que (fr)
- L'analyse de Floquet s'applique aux systèmes dynamiques lorsque la matrice d'avance d'état au point courant est périodique Elle permet de trouver une base de projection de la trajectoire dans laquelle chaque coordonnée est une trajectoire périodique amplifiée (ou atténuée) exponentiellement. Ceci permet de voir la trajectoire comme la superposition de modes (les vecteurs de Floquet) plus ou moins actifs selon la valeur du coefficient d'amplification (les multiplieurs de Floquet). Le théorème démontré par Gaston Floquet dit que : si est une matrice périodique de période minimale T et le système fondamental de solution associé à l'équation , alors il existe une matrice périodique inversible et une matrice constante telles que (fr)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 7605 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-fr:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- L'analyse de Floquet s'applique aux systèmes dynamiques lorsque la matrice d'avance d'état au point courant est périodique Elle permet de trouver une base de projection de la trajectoire dans laquelle chaque coordonnée est une trajectoire périodique amplifiée (ou atténuée) exponentiellement. Ceci permet de voir la trajectoire comme la superposition de modes (les vecteurs de Floquet) plus ou moins actifs selon la valeur du coefficient d'amplification (les multiplieurs de Floquet). (fr)
- L'analyse de Floquet s'applique aux systèmes dynamiques lorsque la matrice d'avance d'état au point courant est périodique Elle permet de trouver une base de projection de la trajectoire dans laquelle chaque coordonnée est une trajectoire périodique amplifiée (ou atténuée) exponentiellement. Ceci permet de voir la trajectoire comme la superposition de modes (les vecteurs de Floquet) plus ou moins actifs selon la valeur du coefficient d'amplification (les multiplieurs de Floquet). (fr)
|
rdfs:label
|
- Satz von Floquet (de)
- Teorema di Floquet (it)
- Théorème de Floquet (fr)
- Теорія Флоке (uk)
- フロケ理論 (ja)
- Satz von Floquet (de)
- Teorema di Floquet (it)
- Théorème de Floquet (fr)
- Теорія Флоке (uk)
- フロケ理論 (ja)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is oa:hasTarget
of | |
is foaf:primaryTopic
of | |