Un polynôme de degré sur un corps K s'écrit sous sa forme la plus générale : où est appelé coefficient de . Si est scindé, on peut aussi le définir grâce à ses racines, c'est-à-dire l'ensemble des valeurs de qui annulent . Ainsi, le théorème de d'Alembert-Gauss garantit que tout polynôme de degré à coefficients complexes admet exactement racines sur , éventuellement multiples (sur en revanche, ce n'est pas toujours vrai). Il en résulte qu'un polynôme à coefficients complexes peut se réécrire : ,

Property Value
dbo:abstract
  • Un polynôme de degré sur un corps K s'écrit sous sa forme la plus générale : où est appelé coefficient de . Si est scindé, on peut aussi le définir grâce à ses racines, c'est-à-dire l'ensemble des valeurs de qui annulent . Ainsi, le théorème de d'Alembert-Gauss garantit que tout polynôme de degré à coefficients complexes admet exactement racines sur , éventuellement multiples (sur en revanche, ce n'est pas toujours vrai). Il en résulte qu'un polynôme à coefficients complexes peut se réécrire : , avec les racines de , éventuellement multiples. Les relations entre les coefficients et les racines portent le nom de François Viète, le premier à les avoir énoncées dans le cas de racines positives. (fr)
  • Un polynôme de degré sur un corps K s'écrit sous sa forme la plus générale : où est appelé coefficient de . Si est scindé, on peut aussi le définir grâce à ses racines, c'est-à-dire l'ensemble des valeurs de qui annulent . Ainsi, le théorème de d'Alembert-Gauss garantit que tout polynôme de degré à coefficients complexes admet exactement racines sur , éventuellement multiples (sur en revanche, ce n'est pas toujours vrai). Il en résulte qu'un polynôme à coefficients complexes peut se réécrire : , avec les racines de , éventuellement multiples. Les relations entre les coefficients et les racines portent le nom de François Viète, le premier à les avoir énoncées dans le cas de racines positives. (fr)
dbo:namedAfter
dbo:wikiPageID
  • 574671 (xsd:integer)
dbo:wikiPageLength
  • 8514 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 188234650 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • Un polynôme de degré sur un corps K s'écrit sous sa forme la plus générale : où est appelé coefficient de . Si est scindé, on peut aussi le définir grâce à ses racines, c'est-à-dire l'ensemble des valeurs de qui annulent . Ainsi, le théorème de d'Alembert-Gauss garantit que tout polynôme de degré à coefficients complexes admet exactement racines sur , éventuellement multiples (sur en revanche, ce n'est pas toujours vrai). Il en résulte qu'un polynôme à coefficients complexes peut se réécrire : , (fr)
  • Un polynôme de degré sur un corps K s'écrit sous sa forme la plus générale : où est appelé coefficient de . Si est scindé, on peut aussi le définir grâce à ses racines, c'est-à-dire l'ensemble des valeurs de qui annulent . Ainsi, le théorème de d'Alembert-Gauss garantit que tout polynôme de degré à coefficients complexes admet exactement racines sur , éventuellement multiples (sur en revanche, ce n'est pas toujours vrai). Il en résulte qu'un polynôme à coefficients complexes peut se réécrire : , (fr)
rdfs:label
  • Formule di Viète (it)
  • Formules van Viète (nl)
  • Fórmulas de Viète (pt)
  • Fórmules de Viète (ca)
  • Relations entre coefficients et racines (fr)
  • Satz von Vieta (de)
  • Vieta's formulas (en)
  • Định lý Viète (vi)
  • Теорема Вієта (uk)
  • Формулы Виета (ru)
  • صيغ فييت (جذور) (ar)
  • 韦达定理 (zh)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of