En analyse numérique, la méthode de discrétisation du gradient (MDG) est un cadre incluant des schémas numériques classiques et récents pour approcher une variété de problèmes de type diffusion, qu'ils soient linéaires ou non, transitoires ou stationnaires. Ces schémas peuvent être conformes ou non, et peuvent être basés sur une discrétisation en espace polygonale ou polyédrique (mais on peut aussi considérer des méthodes d'approximation sans maillage).

Property Value
dbo:abstract
  • En analyse numérique, la méthode de discrétisation du gradient (MDG) est un cadre incluant des schémas numériques classiques et récents pour approcher une variété de problèmes de type diffusion, qu'ils soient linéaires ou non, transitoires ou stationnaires. Ces schémas peuvent être conformes ou non, et peuvent être basés sur une discrétisation en espace polygonale ou polyédrique (mais on peut aussi considérer des méthodes d'approximation sans maillage). La preuve de la convergence d'un schéma élaboré au moyen de la MDG, pour approcher un problème elliptique ou parabolique linéaire ou non, repose sur un petit nombre de propriétés. Dans le cas d'un problème linéaire (stationnaire ou transitoire), il est possible d'établir une estimation d'erreur à l'aide de trois indicateurs propres à la MDG. Dans le cas de certains problèmes non-linéaires, les preuves font appel à des techniques de compacité, sans pour autant nécessiter d'hypothèse forte sur la régularité de la solution du problème continu. pour lesquels une telle preuve de convergence de la MDG a pu être établie sont par exemple le problème de Stefan (qui modélise un matériau changeant d'état thermodynamique), les écoulements diphasiques en milieu poreux, l'équation de Richards (qui modélise l'écoulement de l'eau dans les sous-sols en présence d'air), le modèle de Leray—Lions. Pour ces problèmes, il suffit qu'un schéma numérique entre dans le cadre de la MDG pour que la preuve de sa convergence soit établie. Cela s'applique ainsi aux , aux , aux , et, dans le cas de schémas numériques plus récents, aux , aux , à certaines méthodes de volumes finis en dualité discrète, et à certains schémas d'approximation multi-points des flux. (fr)
  • En analyse numérique, la méthode de discrétisation du gradient (MDG) est un cadre incluant des schémas numériques classiques et récents pour approcher une variété de problèmes de type diffusion, qu'ils soient linéaires ou non, transitoires ou stationnaires. Ces schémas peuvent être conformes ou non, et peuvent être basés sur une discrétisation en espace polygonale ou polyédrique (mais on peut aussi considérer des méthodes d'approximation sans maillage). La preuve de la convergence d'un schéma élaboré au moyen de la MDG, pour approcher un problème elliptique ou parabolique linéaire ou non, repose sur un petit nombre de propriétés. Dans le cas d'un problème linéaire (stationnaire ou transitoire), il est possible d'établir une estimation d'erreur à l'aide de trois indicateurs propres à la MDG. Dans le cas de certains problèmes non-linéaires, les preuves font appel à des techniques de compacité, sans pour autant nécessiter d'hypothèse forte sur la régularité de la solution du problème continu. pour lesquels une telle preuve de convergence de la MDG a pu être établie sont par exemple le problème de Stefan (qui modélise un matériau changeant d'état thermodynamique), les écoulements diphasiques en milieu poreux, l'équation de Richards (qui modélise l'écoulement de l'eau dans les sous-sols en présence d'air), le modèle de Leray—Lions. Pour ces problèmes, il suffit qu'un schéma numérique entre dans le cadre de la MDG pour que la preuve de sa convergence soit établie. Cela s'applique ainsi aux , aux , aux , et, dans le cas de schémas numériques plus récents, aux , aux , à certaines méthodes de volumes finis en dualité discrète, et à certains schémas d'approximation multi-points des flux. (fr)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 11155499 (xsd:integer)
dbo:wikiPageLength
  • 17933 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 169706529 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • En analyse numérique, la méthode de discrétisation du gradient (MDG) est un cadre incluant des schémas numériques classiques et récents pour approcher une variété de problèmes de type diffusion, qu'ils soient linéaires ou non, transitoires ou stationnaires. Ces schémas peuvent être conformes ou non, et peuvent être basés sur une discrétisation en espace polygonale ou polyédrique (mais on peut aussi considérer des méthodes d'approximation sans maillage). (fr)
  • En analyse numérique, la méthode de discrétisation du gradient (MDG) est un cadre incluant des schémas numériques classiques et récents pour approcher une variété de problèmes de type diffusion, qu'ils soient linéaires ou non, transitoires ou stationnaires. Ces schémas peuvent être conformes ou non, et peuvent être basés sur une discrétisation en espace polygonale ou polyédrique (mais on peut aussi considérer des méthodes d'approximation sans maillage). (fr)
rdfs:label
  • Méthode de discrétisation du gradient (fr)
  • Méthode de discrétisation du gradient (fr)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of