En théorie des probabilités, la loi du logarithme itéré est un résultat de convergence presque sûre de la limite supérieure et de la limite inférieure d'une moyenne de variables aléatoires réelles. Bien qu'elle établisse une divergence, puisque les deux limites ne sont pas égales, la loi du logarithme itéré peut être considérée comme un résultat intermédiaire entre la loi des grands nombres et le théorème central limite. Elle est due à Alexandre Khintchine (1924) qui l'obtint pour des variables de Bernoulli puis par Andreï Kolmogorov en 1929.

Property Value
dbo:abstract
  • En théorie des probabilités, la loi du logarithme itéré est un résultat de convergence presque sûre de la limite supérieure et de la limite inférieure d'une moyenne de variables aléatoires réelles. Bien qu'elle établisse une divergence, puisque les deux limites ne sont pas égales, la loi du logarithme itéré peut être considérée comme un résultat intermédiaire entre la loi des grands nombres et le théorème central limite. Elle est due à Alexandre Khintchine (1924) qui l'obtint pour des variables de Bernoulli puis par Andreï Kolmogorov en 1929. (fr)
  • En théorie des probabilités, la loi du logarithme itéré est un résultat de convergence presque sûre de la limite supérieure et de la limite inférieure d'une moyenne de variables aléatoires réelles. Bien qu'elle établisse une divergence, puisque les deux limites ne sont pas égales, la loi du logarithme itéré peut être considérée comme un résultat intermédiaire entre la loi des grands nombres et le théorème central limite. Elle est due à Alexandre Khintchine (1924) qui l'obtint pour des variables de Bernoulli puis par Andreï Kolmogorov en 1929. (fr)
dbo:discoverer
dbo:thumbnail
dbo:wikiPageID
  • 6754702 (xsd:integer)
dbo:wikiPageLength
  • 2221 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 178926792 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • En théorie des probabilités, la loi du logarithme itéré est un résultat de convergence presque sûre de la limite supérieure et de la limite inférieure d'une moyenne de variables aléatoires réelles. Bien qu'elle établisse une divergence, puisque les deux limites ne sont pas égales, la loi du logarithme itéré peut être considérée comme un résultat intermédiaire entre la loi des grands nombres et le théorème central limite. Elle est due à Alexandre Khintchine (1924) qui l'obtint pour des variables de Bernoulli puis par Andreï Kolmogorov en 1929. (fr)
  • En théorie des probabilités, la loi du logarithme itéré est un résultat de convergence presque sûre de la limite supérieure et de la limite inférieure d'une moyenne de variables aléatoires réelles. Bien qu'elle établisse une divergence, puisque les deux limites ne sont pas égales, la loi du logarithme itéré peut être considérée comme un résultat intermédiaire entre la loi des grands nombres et le théorème central limite. Elle est due à Alexandre Khintchine (1924) qui l'obtint pour des variables de Bernoulli puis par Andreï Kolmogorov en 1929. (fr)
rdfs:label
  • Loi du logarithme itéré (fr)
  • Loi du logarithme itéré (fr)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of