Une courbe est fermée quand elle se replie sur elle-même. Plus précisément, c'est un arc paramétré défini par une fonction périodique. Ces courbes vérifient un certain nombre de propriétés particulières, qui paraissent souvent intuitives mais n'en posèrent pas moins de sérieuses difficultés aux mathématiciens. La fonction de paramétrisation est supposée dans cet article au moins continûment dérivable. Si elle est seulement continue, on parle de lacet. De plus, l'arc est supposé plan. L'étude de la disposition des courbes dans l'espace de dimension 3 fait appel à la théorie des nœuds.

Property Value
dbo:abstract
  • Une courbe est fermée quand elle se replie sur elle-même. Plus précisément, c'est un arc paramétré défini par une fonction périodique. Ces courbes vérifient un certain nombre de propriétés particulières, qui paraissent souvent intuitives mais n'en posèrent pas moins de sérieuses difficultés aux mathématiciens. La fonction de paramétrisation est supposée dans cet article au moins continûment dérivable. Si elle est seulement continue, on parle de lacet. De plus, l'arc est supposé plan. L'étude de la disposition des courbes dans l'espace de dimension 3 fait appel à la théorie des nœuds. On dit que la courbe fermée est simple quand elle n'admet pas de point double (cf l'article paramétrisation). On supposera la courbe continûment dérivable. (fr)
  • Une courbe est fermée quand elle se replie sur elle-même. Plus précisément, c'est un arc paramétré défini par une fonction périodique. Ces courbes vérifient un certain nombre de propriétés particulières, qui paraissent souvent intuitives mais n'en posèrent pas moins de sérieuses difficultés aux mathématiciens. La fonction de paramétrisation est supposée dans cet article au moins continûment dérivable. Si elle est seulement continue, on parle de lacet. De plus, l'arc est supposé plan. L'étude de la disposition des courbes dans l'espace de dimension 3 fait appel à la théorie des nœuds. On dit que la courbe fermée est simple quand elle n'admet pas de point double (cf l'article paramétrisation). On supposera la courbe continûment dérivable. (fr)
dbo:wikiPageID
  • 661093 (xsd:integer)
dbo:wikiPageLength
  • 2513 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 177202379 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • Une courbe est fermée quand elle se replie sur elle-même. Plus précisément, c'est un arc paramétré défini par une fonction périodique. Ces courbes vérifient un certain nombre de propriétés particulières, qui paraissent souvent intuitives mais n'en posèrent pas moins de sérieuses difficultés aux mathématiciens. La fonction de paramétrisation est supposée dans cet article au moins continûment dérivable. Si elle est seulement continue, on parle de lacet. De plus, l'arc est supposé plan. L'étude de la disposition des courbes dans l'espace de dimension 3 fait appel à la théorie des nœuds. (fr)
  • Une courbe est fermée quand elle se replie sur elle-même. Plus précisément, c'est un arc paramétré défini par une fonction périodique. Ces courbes vérifient un certain nombre de propriétés particulières, qui paraissent souvent intuitives mais n'en posèrent pas moins de sérieuses difficultés aux mathématiciens. La fonction de paramétrisation est supposée dans cet article au moins continûment dérivable. Si elle est seulement continue, on parle de lacet. De plus, l'arc est supposé plan. L'étude de la disposition des courbes dans l'espace de dimension 3 fait appel à la théorie des nœuds. (fr)
rdfs:label
  • Courbe fermée (fr)
  • Courbe fermée (fr)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of