dbo:abstract
|
- Un aimant monomoléculaire ou nano-aimant moléculaire, appelé aussi SMM, de l'acronyme anglais Single Molecule Magnet, est une molécule faisant partie des composés de coordination qui a un comportement superparamagnétique: c'est un aimant uniquement en dessous d'une certaine température dite de blocage. Les aimants monomoléculaires sont des macromolécules, c'est-à-dire composés de 100 à 1 000 atomes. Bien que découverts en 1993, nommés en 1996, l'idée du premier aimant monomoléculaire fut décrite en 1980. Ils présentent quelques centres magnétiques couplés et isolés de l’environnement extérieur par des ligands volumineux (souvent des ligands organo-carboxylate). Le cœur magnétique est le plus souvent constitué de métaux de transition, les ponts permettant une interaction d'échange entre ces différents constituants sont souvent des composés oxygénés tels que O2-, OH-, OR- ou encore RCO2. Ils donneront naissances aux aimants mono-ioniques, ou Single-Ion Magnets (SIMs) en anglais. Bien que plusieurs centaines d'articles ont été rédigés sur les SMMs et les SIMs, ils ne sont pas encore utilisés industriellement, leur comportement n'apparaissant qu'à de trop faibles températures, en-dessous de la température d'ébullition de l'azote liquide (77 kelvins). Ces molécules présentent, en dessous de leur température de blocage, une lente relaxation de l'aimantation d'origine purement moléculaire. Elles peuvent être magnétisées par un champ magnétique extérieur et conserveront cette aimantation même après coupure du champ magnétique. On appelle cela la mémoire magnétique. Par exemple, pour le , après avoir coupé le champ magnétique pendant 4 mois, l'aimantation de la molécule, laissée à 2 kelvins, est toujours présente à 40% de sa valeur de saturation. Si l'on fait le même protocole à 1.5 kelvin, il faudra attendre 40 ans pour obtenir le même résultat (toujours pour le ). Cette propriété est propre à la molécule même, aucune interaction entre molécules n'est nécessaire. L'ordre à longue portée des moments magnétiques n'est pas nécessaire, et le comportement caractéristique du magnétisme moléculaire apparaît même lorsque la molécule est très diluée. C'est une différence notable face aux aimants conventionnels. On peut ainsi dissoudre une SMM dans un solvant diamagnétique et elle montrera toujours cette propriété. Cette lente relaxation de l'aimantation donne lieu à un phénomène d'hystérésis, similaire à ceux observés avec les aimants conventionnels, mais ici d'origine moléculaire : il devient donc possible de stocker de l'information dans une seule molécule. Les SMMs combinent les avantages de l'échelle moléculaire, et les propriétés quantiques qui vont avec, aux propriétés magnétiques classiques des aimants macroscopiques conventionnels. Elles possèdent ainsi un grand éventail de propriétés quantiques, allant de l'effet tunnel quantique de l'aimantation à l'interférence de la phase de Berry en passant par la cohérence quantique. Cette dernière étant, grâce à la faiblesse des interactions spin-orbite et hyperfine, bien supérieure à celles habituelles des métaux ou semi-conducteurs. Leurs propriétés magnétiques couplées à leur monodispersité font d'elles des candidates prometteuses au stockage d'information à haute densité, ainsi que, en raison de leur long temps de cohérence, un modèle d'ordinateur quantique. (fr)
- Un aimant monomoléculaire ou nano-aimant moléculaire, appelé aussi SMM, de l'acronyme anglais Single Molecule Magnet, est une molécule faisant partie des composés de coordination qui a un comportement superparamagnétique: c'est un aimant uniquement en dessous d'une certaine température dite de blocage. Les aimants monomoléculaires sont des macromolécules, c'est-à-dire composés de 100 à 1 000 atomes. Bien que découverts en 1993, nommés en 1996, l'idée du premier aimant monomoléculaire fut décrite en 1980. Ils présentent quelques centres magnétiques couplés et isolés de l’environnement extérieur par des ligands volumineux (souvent des ligands organo-carboxylate). Le cœur magnétique est le plus souvent constitué de métaux de transition, les ponts permettant une interaction d'échange entre ces différents constituants sont souvent des composés oxygénés tels que O2-, OH-, OR- ou encore RCO2. Ils donneront naissances aux aimants mono-ioniques, ou Single-Ion Magnets (SIMs) en anglais. Bien que plusieurs centaines d'articles ont été rédigés sur les SMMs et les SIMs, ils ne sont pas encore utilisés industriellement, leur comportement n'apparaissant qu'à de trop faibles températures, en-dessous de la température d'ébullition de l'azote liquide (77 kelvins). Ces molécules présentent, en dessous de leur température de blocage, une lente relaxation de l'aimantation d'origine purement moléculaire. Elles peuvent être magnétisées par un champ magnétique extérieur et conserveront cette aimantation même après coupure du champ magnétique. On appelle cela la mémoire magnétique. Par exemple, pour le , après avoir coupé le champ magnétique pendant 4 mois, l'aimantation de la molécule, laissée à 2 kelvins, est toujours présente à 40% de sa valeur de saturation. Si l'on fait le même protocole à 1.5 kelvin, il faudra attendre 40 ans pour obtenir le même résultat (toujours pour le ). Cette propriété est propre à la molécule même, aucune interaction entre molécules n'est nécessaire. L'ordre à longue portée des moments magnétiques n'est pas nécessaire, et le comportement caractéristique du magnétisme moléculaire apparaît même lorsque la molécule est très diluée. C'est une différence notable face aux aimants conventionnels. On peut ainsi dissoudre une SMM dans un solvant diamagnétique et elle montrera toujours cette propriété. Cette lente relaxation de l'aimantation donne lieu à un phénomène d'hystérésis, similaire à ceux observés avec les aimants conventionnels, mais ici d'origine moléculaire : il devient donc possible de stocker de l'information dans une seule molécule. Les SMMs combinent les avantages de l'échelle moléculaire, et les propriétés quantiques qui vont avec, aux propriétés magnétiques classiques des aimants macroscopiques conventionnels. Elles possèdent ainsi un grand éventail de propriétés quantiques, allant de l'effet tunnel quantique de l'aimantation à l'interférence de la phase de Berry en passant par la cohérence quantique. Cette dernière étant, grâce à la faiblesse des interactions spin-orbite et hyperfine, bien supérieure à celles habituelles des métaux ou semi-conducteurs. Leurs propriétés magnétiques couplées à leur monodispersité font d'elles des candidates prometteuses au stockage d'information à haute densité, ainsi que, en raison de leur long temps de cohérence, un modèle d'ordinateur quantique. (fr)
|