Le théorème de Lax-Milgram – des noms de Peter Lax et Arthur Milgram – est un théorème de mathématiques s'appliquant à certains problèmes aux dérivées partielles exprimés sous une formulation faible (appelée également formulation variationnelle). Il est notamment l'un des fondements de la méthode des éléments finis.

PropertyValue
dbpedia-owl:abstract
  • Le théorème de Lax-Milgram – des noms de Peter Lax et Arthur Milgram – est un théorème de mathématiques s'appliquant à certains problèmes aux dérivées partielles exprimés sous une formulation faible (appelée également formulation variationnelle). Il est notamment l'un des fondements de la méthode des éléments finis.
  • Das Lemma von Lax-Milgram, auch Satz von Lax-Milgram, ist eine Aussage der Funktionalanalysis, einem Teilgebiet der Mathematik, die nach Peter Lax und Arthur Milgram benannt ist. Diese beiden Mathematiker bewiesen 1954 eine erste Version dieses Lemmas, welches die Aussage des Satzes von Fréchet-Riesz auf stetige Sesquilinearformen verallgemeinert. Eine allgemeinere Version des Lemmas wurde von Ivo Babuška bewiesen, weshalb diese Aussage auch als Satz von Babuška–Lax–Milgram bekannt ist. Anwendung finden diese Aussagen in der Theorie der partiellen Differentialgleichungen. Mit ihrer Hilfe können Existenz- und Eindeutigkeitsaussagen über Lösungen von partiellen Differentialgleichungen gemacht werden.
  • Il lemma di Lax-Milgram è un risultato di analisi funzionale con rilevanti applicazioni nella teoria delle equazioni alle derivate parziali ed è fondamentale in analisi numerica per lo studio del metodo degli elementi finiti. Il punto di partenza è la formulazione debole del problema alle derivate parziali.Nel 1971 Ivo Babuška formì una generalizzazione del teorema, il teorema di Babuška-Lax-Milgram.
  • In mathematics, the Lions–Lax–Milgram theorem (or simply Lions’ theorem) is a result in functional analysis with applications in the study of partial differential equations. It is a generalization of the famous Lax–Milgram theorem, which gives conditions under which a bilinear function can be "inverted" to show the existence and uniqueness of a weak solution to a given boundary value problem. The result is named after the mathematicians Jacques-Louis Lions, Peter Lax and Arthur Milgram.
  • Em matemática, o Teorema de Lax-Milgram é um resultado de análise funcional com aplicação na teoria de equações à derivadas parciais. Esse teorema demonstra sob certas condições a existência e unicidade de uma solução fraca de um problema de valor de contorno. Seu nome é uma homenagem aos matemáticos Peter Lax e Arthur Milgram.
dbpedia-owl:wikiPageID
  • 735505 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 6298 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 31 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 103902559 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • Le théorème de Lax-Milgram – des noms de Peter Lax et Arthur Milgram – est un théorème de mathématiques s'appliquant à certains problèmes aux dérivées partielles exprimés sous une formulation faible (appelée également formulation variationnelle). Il est notamment l'un des fondements de la méthode des éléments finis.
  • Il lemma di Lax-Milgram è un risultato di analisi funzionale con rilevanti applicazioni nella teoria delle equazioni alle derivate parziali ed è fondamentale in analisi numerica per lo studio del metodo degli elementi finiti. Il punto di partenza è la formulazione debole del problema alle derivate parziali.Nel 1971 Ivo Babuška formì una generalizzazione del teorema, il teorema di Babuška-Lax-Milgram.
  • In mathematics, the Lions–Lax–Milgram theorem (or simply Lions’ theorem) is a result in functional analysis with applications in the study of partial differential equations. It is a generalization of the famous Lax–Milgram theorem, which gives conditions under which a bilinear function can be "inverted" to show the existence and uniqueness of a weak solution to a given boundary value problem. The result is named after the mathematicians Jacques-Louis Lions, Peter Lax and Arthur Milgram.
  • Em matemática, o Teorema de Lax-Milgram é um resultado de análise funcional com aplicação na teoria de equações à derivadas parciais. Esse teorema demonstra sob certas condições a existência e unicidade de uma solução fraca de um problema de valor de contorno. Seu nome é uma homenagem aos matemáticos Peter Lax e Arthur Milgram.
  • Das Lemma von Lax-Milgram, auch Satz von Lax-Milgram, ist eine Aussage der Funktionalanalysis, einem Teilgebiet der Mathematik, die nach Peter Lax und Arthur Milgram benannt ist. Diese beiden Mathematiker bewiesen 1954 eine erste Version dieses Lemmas, welches die Aussage des Satzes von Fréchet-Riesz auf stetige Sesquilinearformen verallgemeinert. Eine allgemeinere Version des Lemmas wurde von Ivo Babuška bewiesen, weshalb diese Aussage auch als Satz von Babuška–Lax–Milgram bekannt ist.
rdfs:label
  • Théorème de Lax-Milgram
  • Lemma di Lax-Milgram
  • Lemma von Lax-Milgram
  • Lions–Lax–Milgram theorem
  • Teorema de Lax–Milgram
  • Теорема Лакса — Мильграма
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageDisambiguates of
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of