In matematica, il modulo di continuità è uno strumento per misurare il comportamento di una funzione. È un modo per analizzare funzioni "patologiche", ma che soddisfano comunque certe condizioni molto generalizzate di regolarità.

PropertyValue
dbpedia-owl:abstract
  • In matematica, il modulo di continuità è uno strumento per misurare il comportamento di una funzione. È un modo per analizzare funzioni "patologiche", ma che soddisfano comunque certe condizioni molto generalizzate di regolarità.
  • In mathematical analysis, a modulus of continuity is a function ω : [0, ∞] → [0, ∞] used to measure quantitatively the uniform continuity of functions. So, a function f : I → R admits ω as a modulus of continuity if and only iffor all x and y in the domain of f. Since moduli of continuity are required to be infinitesimal at 0, a function turns out to be uniformly continuous if and only if it admits a modulus of continuity. Moreover, relevance to the notion is given by the fact that sets of functions sharing the same modulus of continuity are exactly equicontinuous families. For instance, the modulus ω(t) := kt describes the k-Lipschitz functions, the moduli ω(t) := ktα describe the Hölder continuity, the modulus ω(t) := kt(|log(t)|+1) describes the almost Lipschitz class, and so on. In general, the role of ω is to fix some explicit functional dependence of ε on δ in the (ε, δ) definition of uniform continuity. The same notions generalize naturally to functions between metric spaces. Moreover, a suitable local version of these notions allows to describe quantitatively the continuity at a point in terms of moduli of continuity.A special role is played by concave moduli of continuity, especially in connection with extension properties, and with approximation of uniformly continuous functions. For a function between metric spaces, it is equivalent to admit a modulus of continuity that is either concave, or subadditive, or uniformly continuous, or sublinear (in the sense of growth). Actually, the existence of such special moduli of continuity for a uniformly continuous function is always ensured whenever the domain is either a compact, or a convex subset of a normed space. However, a uniformly continuous function on a general metric space admits a concave modulus of continuity if and only if the ratiosare uniformly bounded for all pairs (x, x′) bounded away from the diagonal of X. The functions with the latter property constitute a special subclass of the uniformly continuous functions, that in the following we refer to as the special uniformly continuous functions. Real-valued special uniformly continuous functions on the metric space X can also be characterized as the set of all functions that are restrictions to X of uniformly continuous functions over any normed space isometrically containing X. Also, it can be characterized as the uniform closure of the Lipschitz functions on X.
dbpedia-owl:wikiPageExternalLink
dbpedia-owl:wikiPageID
  • 5369602 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 18800 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 46 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 110352581 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:année
  • 1909 (xsd:integer)
  • 1919 (xsd:integer)
  • 2006 (xsd:integer)
prop-fr:first
  • Henri
prop-fr:id
  • Lebesgue
  • Steffens
  • Continuity,_modulus_of&oldid=16325
  • La Vallée Poussin
prop-fr:lang
  • en
prop-fr:lienAuteur
  • Henri-Léon Lebesgue
  • Charles-Jean de La Vallée Poussin
prop-fr:lienPériodique
  • Annales de la Faculté des Sciences de Toulouse
prop-fr:lienÉditeur
  • Birkhäuser Verlag
prop-fr:lieu
  • Boston
  • Paris
prop-fr:nom
  • Lebesgue
  • Steffens
  • A. V. Efimov
  • de la Vallée Poussin
prop-fr:pages
  • 25 (xsd:integer)
prop-fr:prénom
  • C.
  • Karl-Georg
prop-fr:revue
  • Ann. Fac. Sci. Univ. Toulouse
prop-fr:réimpression
  • 1952 (xsd:integer)
prop-fr:série
  • 3 (xsd:integer)
prop-fr:titre
  • Continuity, modulus of
  • Sur les intégrales singulières
  • The History of Approximation Theory
  • Leçons sur l'approximation des fonctions d'une variable réelle
prop-fr:url
prop-fr:volume
  • 1 (xsd:integer)
prop-fr:wikiPageUsesTemplate
prop-fr:éditeur
  • Birkhäuser
  • Gauthier-Villars
dcterms:subject
rdfs:comment
  • In matematica, il modulo di continuità è uno strumento per misurare il comportamento di una funzione. È un modo per analizzare funzioni "patologiche", ma che soddisfano comunque certe condizioni molto generalizzate di regolarità.
  • In mathematical analysis, a modulus of continuity is a function ω : [0, ∞] → [0, ∞] used to measure quantitatively the uniform continuity of functions. So, a function f : I → R admits ω as a modulus of continuity if and only iffor all x and y in the domain of f. Since moduli of continuity are required to be infinitesimal at 0, a function turns out to be uniformly continuous if and only if it admits a modulus of continuity.
rdfs:label
  • Module de continuité
  • Modulo di continuità
  • Modulus of continuity
  • Модуль непрерывности
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of