En géométrie, les formules de Steiner-Minkowski sont des relations traitant d'un compact C d'un espace euclidien E.

PropertyValue
dbpedia-owl:abstract
  • En géométrie, les formules de Steiner-Minkowski sont des relations traitant d'un compact C d'un espace euclidien E. On ajoute en général une condition supplémentaire sur le compact, indiquant qu'il est soit convexe, soit de frontière homéomorphe à la sphère et paramétrable par une fonction de classe C2 de la sphère dans l'espace euclidien.La première formule indique que la frontière du compact est mesurable et que sa mesure est égale à la dérivée en 0 de la fonction de R+ dans lui-même, qui à un scalaire ε associe le volume de C + ε.B. Ici, R+ désigne l'ensemble des nombres réels positif, B la boule unité et le signe + la somme de Minkowski. La mesure utilisée est celle de Lebesgue.La deuxième formule indique que la mesure du volume de C + εB s'exprime comme un polynôme de degré la dimension de E, si ε est suffisamment petit.La mesure de la frontière utilisée correspond au contenu n - 1 dimensionnel de Minkowski. Dans le cas où la frontière est paramétrable par une fonction de classe C2, le contenu se confond avec la définition usuelle, c'est-à-dire celle obtenue avec la forme volume canonique. Dans le cas de la dimension 2, ce contenu, dans le cas où la frontière est convexe, se confond avec la longueur de l'arc qu'est la frontière, au sens de Jordan.Les formules de Steiner-Minkowski sont utilisées conjointement avec le théorème de Brunn-Minkowski, pour prouver le Théorème isopérimétrique. Elles ont été ainsi nommées en l'honneur des mathématiciens lituanien Hermann Minkowski et suisse Jakob Steiner.
  • In mathematics, the Minkowski–Steiner formula is a formula relating the surface area and volume of compact subsets of Euclidean space. More precisely, it defines the surface area as the "derivative" of enclosed volume in an appropriate sense.The Minkowski–Steiner formula is used, together with the Brunn–Minkowski theorem, to prove the isoperimetric inequality. It is named after Hermann Minkowski and Jakob Steiner.
dbpedia-owl:thumbnail
dbpedia-owl:wikiPageID
  • 1994748 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 19474 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 51 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 103902910 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:align
  • left
prop-fr:année
  • 1969 (xsd:integer)
  • 2004 (xsd:integer)
prop-fr:format
  • poche
prop-fr:isbn
  • 978 (xsd:integer)
prop-fr:lang
  • en
prop-fr:langue
  • anglais
prop-fr:lccn
  • 2004056946 (xsd:integer)
prop-fr:lienAuteur
  • Herbert Federer
prop-fr:lieu
  • London
  • New-York
prop-fr:nom
  • Dacorogna
  • Federer
prop-fr:prénom
  • Bernard
  • Herbert
prop-fr:titre
  • Cas des convexes
  • Geometric Measure Theory
  • Introduction to the Calculus of Variations
prop-fr:wikiPageUsesTemplate
prop-fr:éditeur
  • Springer-Verlag
  • Imperial College Press
dcterms:subject
rdfs:comment
  • En géométrie, les formules de Steiner-Minkowski sont des relations traitant d'un compact C d'un espace euclidien E.
  • In mathematics, the Minkowski–Steiner formula is a formula relating the surface area and volume of compact subsets of Euclidean space. More precisely, it defines the surface area as the "derivative" of enclosed volume in an appropriate sense.The Minkowski–Steiner formula is used, together with the Brunn–Minkowski theorem, to prove the isoperimetric inequality. It is named after Hermann Minkowski and Jakob Steiner.
rdfs:label
  • Formule de Steiner-Minkowski
  • Minkowski–Steiner formula
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageDisambiguates of
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of