About: dbpedia-fr:Inclusion_fonctionnelle     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : fr.dbpedia.org associated with source document(s)

AttributesValues
rdfs:label
  • Inclusion fonctionnelle (fr)
rdfs:comment
  • Une inclusion fonctionnelle est un problème de la forme où est une fonction entre les deux espaces vectoriels et et est une multifonction entre les mêmes espaces. Ce type de problème est aussi appelé équation généralisée. Il signifie que l'on cherche un point tel que l'ensemble contienne l'élément nul de ou encore tel que l'ensemble contienne . Si , on cherche à résoudre une «simple» équation . On pourrait bien sûr enlever la fonction du modèle, car est une multifonction qui peut être prise en compte par , mais certains problèmes d'inclusion ont une partie fonctionnelle comme ici, que certains résultats (comme le théorème des fonctions implicites, ci-dessous) ou certains algorithmes de résolution (comme l'algorithme de Josephy-Newton) exploitent, en utilisant la possibilité de dé (fr)
sameAs
Wikipage page ID
Wikipage revision ID
dbo:wikiPageWikiLink
Link from a Wikipage to an external page
page length (characters) of wiki page
dct:subject
prop-fr:wikiPageUsesTemplate
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
has abstract
  • Une inclusion fonctionnelle est un problème de la forme où est une fonction entre les deux espaces vectoriels et et est une multifonction entre les mêmes espaces. Ce type de problème est aussi appelé équation généralisée. Il signifie que l'on cherche un point tel que l'ensemble contienne l'élément nul de ou encore tel que l'ensemble contienne . Si , on cherche à résoudre une «simple» équation . On pourrait bien sûr enlever la fonction du modèle, car est une multifonction qui peut être prise en compte par , mais certains problèmes d'inclusion ont une partie fonctionnelle comme ici, que certains résultats (comme le théorème des fonctions implicites, ci-dessous) ou certains algorithmes de résolution (comme l'algorithme de Josephy-Newton) exploitent, en utilisant la possibilité de dériver . Ce modèle de problème est suffisamment général pour englober les problèmes variationnels, les problèmes d'inéquation variationnelle, les problèmes de complémentarité et les conditions d'optimalité du premier ordre des problèmes d'optimisation. Lorsque est différentiable et que certaines propriétés de régularité ont lieu, ce problème peut être résolu numériquement par diverses techniques, notamment l'algorithme de Josephy-Newton. (fr)
is dbo:wikiPageWikiLink of
is Wikipage redirect of
is oa:hasTarget of
is foaf:primaryTopic of
Faceted Search & Find service v1.16.111 as of Oct 19 2022


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3234 as of May 18 2022, on Linux (x86_64-ubuntu_bionic-linux-gnu), Single-Server Edition (39 GB total memory, 16 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software