Property |
Value |
dbo:abstract
|
- En mathématiques, le théorème de Vinogradov est un résultat théorie des nombres. Il est surtout connu pour son corollaire : tout entier impair suffisamment grand peut être écrit comme la somme de trois nombres premiers, non nécessairement distincts. Cette conséquence du théorème de Vinogradov constitue une variante moins forte de la conjecture faible de Goldbach, laquelle, si elle était démontrée, indiquerait que tout nombre entier impair supérieur à cinq peut s'écrire comme somme de trois nombres premiers. L'énoncé exact du théorème de Vinogradov donne des bornes asymptotiques sur le nombre de représentations d'un nombre entier impair comme somme de trois nombres premiers. Le théorème de Vinogradov porte le nom du mathématicien russe Ivan Vinogradov qui l'a démontré en 1937, par la méthode du cercle de Hardy-Littlewood. (fr)
- En mathématiques, le théorème de Vinogradov est un résultat théorie des nombres. Il est surtout connu pour son corollaire : tout entier impair suffisamment grand peut être écrit comme la somme de trois nombres premiers, non nécessairement distincts. Cette conséquence du théorème de Vinogradov constitue une variante moins forte de la conjecture faible de Goldbach, laquelle, si elle était démontrée, indiquerait que tout nombre entier impair supérieur à cinq peut s'écrire comme somme de trois nombres premiers. L'énoncé exact du théorème de Vinogradov donne des bornes asymptotiques sur le nombre de représentations d'un nombre entier impair comme somme de trois nombres premiers. Le théorème de Vinogradov porte le nom du mathématicien russe Ivan Vinogradov qui l'a démontré en 1937, par la méthode du cercle de Hardy-Littlewood. (fr)
|
dbo:isPartOf
| |
dbo:namedAfter
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 5126 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-fr:fr
|
- théorème de Siegel-Walfisz (fr)
- théorème de Siegel-Walfisz (fr)
|
prop-fr:langue
| |
prop-fr:nomUrl
|
- VinogradovsTheorem (fr)
- VinogradovsTheorem (fr)
|
prop-fr:titre
|
- Vinogradov's Theorem (fr)
- Vinogradov's Theorem (fr)
|
prop-fr:trad
|
- Siegel–Walfisz theorem (fr)
- Siegel–Walfisz theorem (fr)
|
prop-fr:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- En mathématiques, le théorème de Vinogradov est un résultat théorie des nombres. Il est surtout connu pour son corollaire : tout entier impair suffisamment grand peut être écrit comme la somme de trois nombres premiers, non nécessairement distincts. Cette conséquence du théorème de Vinogradov constitue une variante moins forte de la conjecture faible de Goldbach, laquelle, si elle était démontrée, indiquerait que tout nombre entier impair supérieur à cinq peut s'écrire comme somme de trois nombres premiers. L'énoncé exact du théorème de Vinogradov donne des bornes asymptotiques sur le nombre de représentations d'un nombre entier impair comme somme de trois nombres premiers. (fr)
- En mathématiques, le théorème de Vinogradov est un résultat théorie des nombres. Il est surtout connu pour son corollaire : tout entier impair suffisamment grand peut être écrit comme la somme de trois nombres premiers, non nécessairement distincts. Cette conséquence du théorème de Vinogradov constitue une variante moins forte de la conjecture faible de Goldbach, laquelle, si elle était démontrée, indiquerait que tout nombre entier impair supérieur à cinq peut s'écrire comme somme de trois nombres premiers. L'énoncé exact du théorème de Vinogradov donne des bornes asymptotiques sur le nombre de représentations d'un nombre entier impair comme somme de trois nombres premiers. (fr)
|
rdfs:label
|
- Satz von Winogradow (de)
- Stelling van Vinogradov (nl)
- Teorema de Vinográdov (es)
- Théorème de Vinogradov (fr)
- Vinogradov's theorem (en)
- ヴィノグラードフの定理 (ja)
|
rdfs:seeAlso
| |
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageDisambiguates
of | |
is dbo:wikiPageWikiLink
of | |
is oa:hasTarget
of | |
is foaf:primaryTopic
of | |