Property |
Value |
dbo:abstract
|
- Dans la théorie mathématique des réseaux de neurones artificiels, le théorème d'approximation universelle indique qu'un réseau à propagation avant d'une seule couche cachée contenant un nombre fini de neurones (c'est-à-dire, un perceptron multicouche) peut approximer des fonctions continues sur des sous-ensembles compacts de Rn.
* Portail des télécommunications
* Portail des mathématiques (fr)
- Dans la théorie mathématique des réseaux de neurones artificiels, le théorème d'approximation universelle indique qu'un réseau à propagation avant d'une seule couche cachée contenant un nombre fini de neurones (c'est-à-dire, un perceptron multicouche) peut approximer des fonctions continues sur des sous-ensembles compacts de Rn.
* Portail des télécommunications
* Portail des mathématiques (fr)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 778 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-fr:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- Dans la théorie mathématique des réseaux de neurones artificiels, le théorème d'approximation universelle indique qu'un réseau à propagation avant d'une seule couche cachée contenant un nombre fini de neurones (c'est-à-dire, un perceptron multicouche) peut approximer des fonctions continues sur des sous-ensembles compacts de Rn.
* Portail des télécommunications
* Portail des mathématiques (fr)
- Dans la théorie mathématique des réseaux de neurones artificiels, le théorème d'approximation universelle indique qu'un réseau à propagation avant d'une seule couche cachée contenant un nombre fini de neurones (c'est-à-dire, un perceptron multicouche) peut approximer des fonctions continues sur des sous-ensembles compacts de Rn.
* Portail des télécommunications
* Portail des mathématiques (fr)
|
rdfs:label
|
- Théorème d'approximation universelle (fr)
- Теорема Цибенка (uk)
- Théorème d'approximation universelle (fr)
- Теорема Цибенка (uk)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageWikiLink
of | |
is oa:hasTarget
of | |
is foaf:primaryTopic
of | |