Dans les années 1950, avec les succès de la renormalisation perturbative en électrodynamique quantique, est apparu le besoin d'une formulation mathématiquement rigoureuse de la théorie quantique des champs à partir des quelques principes généraux, dont : * les concepts de la mécanique quantique, * l'invariance sous le groupe de Poincaré, * la localité des champs. L'objectif était d'éclaircir le statut des équations de la théorie quantique des champs, et d'essayer de montrer qu'il existe des solutions à ces équations. Deux formulations sont apparues : est un opérateur.

Property Value
dbo:abstract
  • Dans les années 1950, avec les succès de la renormalisation perturbative en électrodynamique quantique, est apparu le besoin d'une formulation mathématiquement rigoureuse de la théorie quantique des champs à partir des quelques principes généraux, dont : * les concepts de la mécanique quantique, * l'invariance sous le groupe de Poincaré, * la localité des champs. L'objectif était d'éclaircir le statut des équations de la théorie quantique des champs, et d'essayer de montrer qu'il existe des solutions à ces équations. Deux formulations sont apparues : * Formulation classique : suivant la voie originale définie dans les Fondements mathématiques de la mécanique quantique de John von Neumann (1932) et poursuivi par Wightman et Streater, elle est basée sur un espace de Hilbert . Une observable est alors représentée par un opérateur auto-adjoint agissant dans cet espace de Hilbert. Cette approche utilise abondamment la théorie des distributions inventée par Laurent Schwartz en 1949, car le statut mathématique d'un champ quantique y est celui d'une distribution à valeur opérateur : si désigne un point de l'espace-temps quadri-dimensionnel, un champ quantique local, et une fonction lisse à support compact, alors : est un opérateur. * Formulation algébrique : introduite par Segal (1947) et développée par Haag, Ruelle et Kastler, cette approche est basée sur une C*-algèbre, une observable étant ici représentée par un élément de cette C*-algèbre. Ces deux formulations sont entièrement équivalentes en mécanique quantique, où il n'y a qu'un nombre fini de degrés de liberté, en vertu d'un théorème de Von Neumann qui assure l'unicité des représentations irréductibles des relations de commutation canoniques. En revanche, en théorie quantique des champs où il existe un nombre infini de degré de liberté, il y a une infinité non-dénombrable de représentations irréductibles qui sont inéquivalentes, ce qui signifie que l'approche algébrique est a priori beaucoup moins restrictive que la formulation classique. (fr)
  • Dans les années 1950, avec les succès de la renormalisation perturbative en électrodynamique quantique, est apparu le besoin d'une formulation mathématiquement rigoureuse de la théorie quantique des champs à partir des quelques principes généraux, dont : * les concepts de la mécanique quantique, * l'invariance sous le groupe de Poincaré, * la localité des champs. L'objectif était d'éclaircir le statut des équations de la théorie quantique des champs, et d'essayer de montrer qu'il existe des solutions à ces équations. Deux formulations sont apparues : * Formulation classique : suivant la voie originale définie dans les Fondements mathématiques de la mécanique quantique de John von Neumann (1932) et poursuivi par Wightman et Streater, elle est basée sur un espace de Hilbert . Une observable est alors représentée par un opérateur auto-adjoint agissant dans cet espace de Hilbert. Cette approche utilise abondamment la théorie des distributions inventée par Laurent Schwartz en 1949, car le statut mathématique d'un champ quantique y est celui d'une distribution à valeur opérateur : si désigne un point de l'espace-temps quadri-dimensionnel, un champ quantique local, et une fonction lisse à support compact, alors : est un opérateur. * Formulation algébrique : introduite par Segal (1947) et développée par Haag, Ruelle et Kastler, cette approche est basée sur une C*-algèbre, une observable étant ici représentée par un élément de cette C*-algèbre. Ces deux formulations sont entièrement équivalentes en mécanique quantique, où il n'y a qu'un nombre fini de degrés de liberté, en vertu d'un théorème de Von Neumann qui assure l'unicité des représentations irréductibles des relations de commutation canoniques. En revanche, en théorie quantique des champs où il existe un nombre infini de degré de liberté, il y a une infinité non-dénombrable de représentations irréductibles qui sont inéquivalentes, ce qui signifie que l'approche algébrique est a priori beaucoup moins restrictive que la formulation classique. (fr)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 519753 (xsd:integer)
dbo:wikiPageLength
  • 7404 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 174901404 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:fr
  • Rudolf Haag (fr)
  • Bert Schroer (fr)
  • Detlev Buchholz (fr)
  • Ray Streater (fr)
  • Rudolf Haag (fr)
  • Bert Schroer (fr)
  • Detlev Buchholz (fr)
  • Ray Streater (fr)
prop-fr:lang
  • de (fr)
  • en (fr)
  • de (fr)
  • en (fr)
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • Dans les années 1950, avec les succès de la renormalisation perturbative en électrodynamique quantique, est apparu le besoin d'une formulation mathématiquement rigoureuse de la théorie quantique des champs à partir des quelques principes généraux, dont : * les concepts de la mécanique quantique, * l'invariance sous le groupe de Poincaré, * la localité des champs. L'objectif était d'éclaircir le statut des équations de la théorie quantique des champs, et d'essayer de montrer qu'il existe des solutions à ces équations. Deux formulations sont apparues : est un opérateur. (fr)
  • Dans les années 1950, avec les succès de la renormalisation perturbative en électrodynamique quantique, est apparu le besoin d'une formulation mathématiquement rigoureuse de la théorie quantique des champs à partir des quelques principes généraux, dont : * les concepts de la mécanique quantique, * l'invariance sous le groupe de Poincaré, * la localité des champs. L'objectif était d'éclaircir le statut des équations de la théorie quantique des champs, et d'essayer de montrer qu'il existe des solutions à ces équations. Deux formulations sont apparues : est un opérateur. (fr)
rdfs:label
  • Axiomatische Quantenfeldtheorie (de)
  • Teoría cuántica de campos axiomática (es)
  • Théorie quantique des champs axiomatique (fr)
  • Axiomatische Quantenfeldtheorie (de)
  • Teoría cuántica de campos axiomática (es)
  • Théorie quantique des champs axiomatique (fr)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of