Property |
Value |
dbo:abstract
|
- En logique mathématique une théorie arithmétique est appelée théorie ω-cohérente (oméga-cohérente) quand, pour toute propriété P des nombres entiers que l'on peut exprimer dans le langage de la théorie, si pour chaque entier n, P(n) est démontrable dans la théorie,alors ¬∀x P(x) n'est pas démontrable dans la théorie (¬ pour la négation, ∀ pour la quantification universelle, « pour tout »). Quand on prend pour P un énoncé clos (qui ne dépend pas de x) on retrouve la définition de la cohérence, appelée parfois dans ce contexte cohérence simple, qui est donc conséquence de l'ω-cohérence. (fr)
- En logique mathématique une théorie arithmétique est appelée théorie ω-cohérente (oméga-cohérente) quand, pour toute propriété P des nombres entiers que l'on peut exprimer dans le langage de la théorie, si pour chaque entier n, P(n) est démontrable dans la théorie,alors ¬∀x P(x) n'est pas démontrable dans la théorie (¬ pour la négation, ∀ pour la quantification universelle, « pour tout »). Quand on prend pour P un énoncé clos (qui ne dépend pas de x) on retrouve la définition de la cohérence, appelée parfois dans ce contexte cohérence simple, qui est donc conséquence de l'ω-cohérence. (fr)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 5851 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-fr:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- En logique mathématique une théorie arithmétique est appelée théorie ω-cohérente (oméga-cohérente) quand, pour toute propriété P des nombres entiers que l'on peut exprimer dans le langage de la théorie, si pour chaque entier n, P(n) est démontrable dans la théorie,alors ¬∀x P(x) n'est pas démontrable dans la théorie (¬ pour la négation, ∀ pour la quantification universelle, « pour tout »). Quand on prend pour P un énoncé clos (qui ne dépend pas de x) on retrouve la définition de la cohérence, appelée parfois dans ce contexte cohérence simple, qui est donc conséquence de l'ω-cohérence. (fr)
- En logique mathématique une théorie arithmétique est appelée théorie ω-cohérente (oméga-cohérente) quand, pour toute propriété P des nombres entiers que l'on peut exprimer dans le langage de la théorie, si pour chaque entier n, P(n) est démontrable dans la théorie,alors ¬∀x P(x) n'est pas démontrable dans la théorie (¬ pour la négation, ∀ pour la quantification universelle, « pour tout »). Quand on prend pour P un énoncé clos (qui ne dépend pas de x) on retrouve la définition de la cohérence, appelée parfois dans ce contexte cohérence simple, qui est donc conséquence de l'ω-cohérence. (fr)
|
rdfs:label
|
- Théorie oméga-cohérente (fr)
- Ω-konsistente Theorie (de)
- Ω無矛盾 (ja)
- Théorie oméga-cohérente (fr)
- Ω-konsistente Theorie (de)
- Ω無矛盾 (ja)
|
rdfs:seeAlso
| |
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is oa:hasTarget
of | |
is foaf:primaryTopic
of | |