Property |
Value |
dbo:abstract
|
- Au croisement de la géométrie différentielle et de la théorie des représentations, la représentation des groupes de Lie est une approche de l'étude des groupes de Lie par représentation comme groupe d'automorphismes linéaires d'un espace vectoriel (voire comme groupe classique). Pour un groupe de Lie réel donné G, une représentation réelle ou complexe de G est la donnée d'un espace vectoriel réel ou complexe V et d'un morphisme de groupes de Lie de G dans GL(V), le groupe des automorphismes linéaires de V. (fr)
- Au croisement de la géométrie différentielle et de la théorie des représentations, la représentation des groupes de Lie est une approche de l'étude des groupes de Lie par représentation comme groupe d'automorphismes linéaires d'un espace vectoriel (voire comme groupe classique). Pour un groupe de Lie réel donné G, une représentation réelle ou complexe de G est la donnée d'un espace vectoriel réel ou complexe V et d'un morphisme de groupes de Lie de G dans GL(V), le groupe des automorphismes linéaires de V. (fr)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 1068 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-fr:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- Au croisement de la géométrie différentielle et de la théorie des représentations, la représentation des groupes de Lie est une approche de l'étude des groupes de Lie par représentation comme groupe d'automorphismes linéaires d'un espace vectoriel (voire comme groupe classique). Pour un groupe de Lie réel donné G, une représentation réelle ou complexe de G est la donnée d'un espace vectoriel réel ou complexe V et d'un morphisme de groupes de Lie de G dans GL(V), le groupe des automorphismes linéaires de V. (fr)
- Au croisement de la géométrie différentielle et de la théorie des représentations, la représentation des groupes de Lie est une approche de l'étude des groupes de Lie par représentation comme groupe d'automorphismes linéaires d'un espace vectoriel (voire comme groupe classique). Pour un groupe de Lie réel donné G, une représentation réelle ou complexe de G est la donnée d'un espace vectoriel réel ou complexe V et d'un morphisme de groupes de Lie de G dans GL(V), le groupe des automorphismes linéaires de V. (fr)
|
rdfs:label
|
- Rappresentazioni dei gruppi di Lie (it)
- Representaciones de grupos de Lie (es)
- Représentation d'un groupe de Lie (fr)
- Представление группы Ли (ru)
- 李群表示 (zh)
- Rappresentazioni dei gruppi di Lie (it)
- Representaciones de grupos de Lie (es)
- Représentation d'un groupe de Lie (fr)
- Представление группы Ли (ru)
- 李群表示 (zh)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is oa:hasTarget
of | |
is foaf:primaryTopic
of | |