En mathématiques, les nombres epsilon sont une collection de nombres transfinis définis par la propriété d'être des points fixes d'une application exponentielle. Ils ne peuvent donc pas être atteints à partir de 0 et d'un nombre fini d'exponentiations (et d'opérations « plus faibles », comme l'addition et la multiplication). La forme de base fut introduite par Georg Cantor dans le contexte du calcul sur les ordinaux comme étant les ordinaux ε satisfaisant l'équation où ω est le plus petit ordinal infini ; une extension aux nombres surréels a été découverte par John Horton Conway.

Property Value
dbo:abstract
  • En mathématiques, les nombres epsilon sont une collection de nombres transfinis définis par la propriété d'être des points fixes d'une application exponentielle. Ils ne peuvent donc pas être atteints à partir de 0 et d'un nombre fini d'exponentiations (et d'opérations « plus faibles », comme l'addition et la multiplication). La forme de base fut introduite par Georg Cantor dans le contexte du calcul sur les ordinaux comme étant les ordinaux ε satisfaisant l'équation où ω est le plus petit ordinal infini ; une extension aux nombres surréels a été découverte par John Horton Conway. Le plus petit de ces ordinaux est ε0 (prononcé epsilon zero), « limite » (réunion) de la suite ; on a donc . (fr)
  • En mathématiques, les nombres epsilon sont une collection de nombres transfinis définis par la propriété d'être des points fixes d'une application exponentielle. Ils ne peuvent donc pas être atteints à partir de 0 et d'un nombre fini d'exponentiations (et d'opérations « plus faibles », comme l'addition et la multiplication). La forme de base fut introduite par Georg Cantor dans le contexte du calcul sur les ordinaux comme étant les ordinaux ε satisfaisant l'équation où ω est le plus petit ordinal infini ; une extension aux nombres surréels a été découverte par John Horton Conway. Le plus petit de ces ordinaux est ε0 (prononcé epsilon zero), « limite » (réunion) de la suite ; on a donc . (fr)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 13897416 (xsd:integer)
dbo:wikiPageLength
  • 12846 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 190853052 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:art
  • Epsilon numbers (fr)
  • Epsilon numbers (fr)
prop-fr:fr
  • petit ordinal de Veblen (fr)
  • petit ordinal de Veblen (fr)
prop-fr:id
  • 996964645 (xsd:integer)
prop-fr:lang
  • en (fr)
  • en (fr)
prop-fr:langue
  • en (fr)
  • en (fr)
prop-fr:trad
  • small Veblen ordinal (fr)
  • small Veblen ordinal (fr)
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • En mathématiques, les nombres epsilon sont une collection de nombres transfinis définis par la propriété d'être des points fixes d'une application exponentielle. Ils ne peuvent donc pas être atteints à partir de 0 et d'un nombre fini d'exponentiations (et d'opérations « plus faibles », comme l'addition et la multiplication). La forme de base fut introduite par Georg Cantor dans le contexte du calcul sur les ordinaux comme étant les ordinaux ε satisfaisant l'équation où ω est le plus petit ordinal infini ; une extension aux nombres surréels a été découverte par John Horton Conway. (fr)
  • En mathématiques, les nombres epsilon sont une collection de nombres transfinis définis par la propriété d'être des points fixes d'une application exponentielle. Ils ne peuvent donc pas être atteints à partir de 0 et d'un nombre fini d'exponentiations (et d'opérations « plus faibles », comme l'addition et la multiplication). La forme de base fut introduite par Georg Cantor dans le contexte du calcul sur les ordinaux comme étant les ordinaux ε satisfaisant l'équation où ω est le plus petit ordinal infini ; une extension aux nombres surréels a été découverte par John Horton Conway. (fr)
rdfs:label
  • Liczba epsilonowa (pl)
  • Nombre epsilon (fr)
  • Числа эпсилон (ru)
  • 艾普塞朗數 (zh)
  • Liczba epsilonowa (pl)
  • Nombre epsilon (fr)
  • Числа эпсилон (ru)
  • 艾普塞朗數 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of