Property |
Value |
dbo:abstract
|
- En théorie des probabilités, une mesure aléatoire est une détermination de mesure d'un élément aléatoire. Soit X un espace métrique séparable complet et la tribu de son ensemble de Borel. Une mesure de Borel μ sur X est finie si μ (A) < ∞ pour chaque ensemble A borélien limité. Soit l'espace de toutes les mesures finies sur . Soit (Ω, ℱ, P) un espace probabilisé. Alors, une mesure aléatoire des cartes de cet espace de probabilité à l'espace mesurable . Une mesure peut généralement être décomposé comme suit : Ici est une mesure diffuse non-composée, tandis que en est purement une. (fr)
- En théorie des probabilités, une mesure aléatoire est une détermination de mesure d'un élément aléatoire. Soit X un espace métrique séparable complet et la tribu de son ensemble de Borel. Une mesure de Borel μ sur X est finie si μ (A) < ∞ pour chaque ensemble A borélien limité. Soit l'espace de toutes les mesures finies sur . Soit (Ω, ℱ, P) un espace probabilisé. Alors, une mesure aléatoire des cartes de cet espace de probabilité à l'espace mesurable . Une mesure peut généralement être décomposé comme suit : Ici est une mesure diffuse non-composée, tandis que en est purement une. (fr)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 3149 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-fr:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- En théorie des probabilités, une mesure aléatoire est une détermination de mesure d'un élément aléatoire. Soit X un espace métrique séparable complet et la tribu de son ensemble de Borel. Une mesure de Borel μ sur X est finie si μ (A) < ∞ pour chaque ensemble A borélien limité. Soit l'espace de toutes les mesures finies sur . Soit (Ω, ℱ, P) un espace probabilisé. Alors, une mesure aléatoire des cartes de cet espace de probabilité à l'espace mesurable . Une mesure peut généralement être décomposé comme suit : Ici est une mesure diffuse non-composée, tandis que en est purement une. (fr)
- En théorie des probabilités, une mesure aléatoire est une détermination de mesure d'un élément aléatoire. Soit X un espace métrique séparable complet et la tribu de son ensemble de Borel. Une mesure de Borel μ sur X est finie si μ (A) < ∞ pour chaque ensemble A borélien limité. Soit l'espace de toutes les mesures finies sur . Soit (Ω, ℱ, P) un espace probabilisé. Alors, une mesure aléatoire des cartes de cet espace de probabilité à l'espace mesurable . Une mesure peut généralement être décomposé comme suit : Ici est une mesure diffuse non-composée, tandis que en est purement une. (fr)
|
rdfs:label
|
- Mesure aléatoire (fr)
- Random measure (en)
- Toevalsmaat (nl)
- Zufälliges Maß (de)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is oa:hasTarget
of | |
is foaf:primaryTopic
of | |