Property |
Value |
dbo:abstract
|
- En algèbre linéaire, deux matrices sont l-équivalentes (ou ligne-équivalentes) si on peut passer de l'une à l'autre par des opérations élémentaires sur les lignes. Si A et B sont deux matrices, cette condition se réécrit comme : il existe une matrice inversible tel que . (fr)
- En algèbre linéaire, deux matrices sont l-équivalentes (ou ligne-équivalentes) si on peut passer de l'une à l'autre par des opérations élémentaires sur les lignes. Si A et B sont deux matrices, cette condition se réécrit comme : il existe une matrice inversible tel que . (fr)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 2028 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-fr:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- En algèbre linéaire, deux matrices sont l-équivalentes (ou ligne-équivalentes) si on peut passer de l'une à l'autre par des opérations élémentaires sur les lignes. Si A et B sont deux matrices, cette condition se réécrit comme : il existe une matrice inversible tel que . (fr)
- En algèbre linéaire, deux matrices sont l-équivalentes (ou ligne-équivalentes) si on peut passer de l'une à l'autre par des opérations élémentaires sur les lignes. Si A et B sont deux matrices, cette condition se réécrit comme : il existe une matrice inversible tel que . (fr)
|
rdfs:label
|
- Matrices l-équivalentes (fr)
- Tương đương hàng (vi)
- Matrices l-équivalentes (fr)
- Tương đương hàng (vi)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is oa:hasTarget
of | |
is foaf:primaryTopic
of | |