En analyse numérique, la méthode de Simpson, du nom de Thomas Simpson, est une technique de calcul numérique d'une intégrale, c'est-à-dire le calcul approché de : Cette méthode utilise l'approximation d'ordre 2 de f par un polynôme quadratique P prenant les mêmes valeurs que f aux points d'abscisse a, b et m = (a + b)⁄2. Pour déterminer l'expression de cette parabole (polynôme de degré 2), on utilise l'interpolation lagrangienne. Le résultat peut être mis sous la forme : Un autre moyen d'arriver à ce résultat est d'appliquer les formules de Newton-Cotes avec n = 2. où où :

Property Value
dbo:abstract
  • En analyse numérique, la méthode de Simpson, du nom de Thomas Simpson, est une technique de calcul numérique d'une intégrale, c'est-à-dire le calcul approché de : Cette méthode utilise l'approximation d'ordre 2 de f par un polynôme quadratique P prenant les mêmes valeurs que f aux points d'abscisse a, b et m = (a + b)⁄2. Pour déterminer l'expression de cette parabole (polynôme de degré 2), on utilise l'interpolation lagrangienne. Le résultat peut être mis sous la forme : Un polynôme étant une fonction très facile à intégrer, on approche l'intégrale de la fonction f sur l'intervalle [a, b], par l'intégrale de P sur ce même intervalle. On a ainsi la simple formule : Un autre moyen d'arriver à ce résultat est d'appliquer les formules de Newton-Cotes avec n = 2. Si f est 4 fois continument différentiable sur [a, b], l'erreur d'approximation vaut : où Cette expression du terme d'erreur signifie que la méthode de Simpson est exacte (c'est-à-dire que le terme d'erreur s'annule) pour tout polynôme de degré inférieur ou égal à 3. De plus, cette méthode est d'ordre 4 pour toute fonction continûment dérivable quatre fois sur [a, b]. Par ailleurs, il apparaît que plus l'intervalle est petit, plus l'approximation de la valeur de l'intégrale est bonne. Par conséquent, pour obtenir un résultat correct, on subdivise chaque intervalle [a, m] et [m, b] en sous-intervalles et on additionne la valeur obtenue sur chaque intervalle. Soit : où : * n est le nombre de sous-intervalles de [a, b] ; * h =(b – a)⁄n est la longueur de ces sous-intervalles ; * pour Pour cette formule composite, le terme d'erreur devient égal à ce qui signifie que la méthode composite fournit aussi des résultats exacts pour des polynômes de degré inférieur ou égal à 3. À la fois à cause de sa simplicité de mise en œuvre et sa bonne précision, cette méthode est la plus utilisée par les calculatrices pour tous calculs approchés d'intégrales de fonctions explicites. (fr)
  • En analyse numérique, la méthode de Simpson, du nom de Thomas Simpson, est une technique de calcul numérique d'une intégrale, c'est-à-dire le calcul approché de : Cette méthode utilise l'approximation d'ordre 2 de f par un polynôme quadratique P prenant les mêmes valeurs que f aux points d'abscisse a, b et m = (a + b)⁄2. Pour déterminer l'expression de cette parabole (polynôme de degré 2), on utilise l'interpolation lagrangienne. Le résultat peut être mis sous la forme : Un polynôme étant une fonction très facile à intégrer, on approche l'intégrale de la fonction f sur l'intervalle [a, b], par l'intégrale de P sur ce même intervalle. On a ainsi la simple formule : Un autre moyen d'arriver à ce résultat est d'appliquer les formules de Newton-Cotes avec n = 2. Si f est 4 fois continument différentiable sur [a, b], l'erreur d'approximation vaut : où Cette expression du terme d'erreur signifie que la méthode de Simpson est exacte (c'est-à-dire que le terme d'erreur s'annule) pour tout polynôme de degré inférieur ou égal à 3. De plus, cette méthode est d'ordre 4 pour toute fonction continûment dérivable quatre fois sur [a, b]. Par ailleurs, il apparaît que plus l'intervalle est petit, plus l'approximation de la valeur de l'intégrale est bonne. Par conséquent, pour obtenir un résultat correct, on subdivise chaque intervalle [a, m] et [m, b] en sous-intervalles et on additionne la valeur obtenue sur chaque intervalle. Soit : où : * n est le nombre de sous-intervalles de [a, b] ; * h =(b – a)⁄n est la longueur de ces sous-intervalles ; * pour Pour cette formule composite, le terme d'erreur devient égal à ce qui signifie que la méthode composite fournit aussi des résultats exacts pour des polynômes de degré inférieur ou égal à 3. À la fois à cause de sa simplicité de mise en œuvre et sa bonne précision, cette méthode est la plus utilisée par les calculatrices pour tous calculs approchés d'intégrales de fonctions explicites. (fr)
dbo:namedAfter
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 247126 (xsd:integer)
dbo:wikiPageLength
  • 3529 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 184254945 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • En analyse numérique, la méthode de Simpson, du nom de Thomas Simpson, est une technique de calcul numérique d'une intégrale, c'est-à-dire le calcul approché de : Cette méthode utilise l'approximation d'ordre 2 de f par un polynôme quadratique P prenant les mêmes valeurs que f aux points d'abscisse a, b et m = (a + b)⁄2. Pour déterminer l'expression de cette parabole (polynôme de degré 2), on utilise l'interpolation lagrangienne. Le résultat peut être mis sous la forme : Un autre moyen d'arriver à ce résultat est d'appliquer les formules de Newton-Cotes avec n = 2. où où : (fr)
  • En analyse numérique, la méthode de Simpson, du nom de Thomas Simpson, est une technique de calcul numérique d'une intégrale, c'est-à-dire le calcul approché de : Cette méthode utilise l'approximation d'ordre 2 de f par un polynôme quadratique P prenant les mêmes valeurs que f aux points d'abscisse a, b et m = (a + b)⁄2. Pour déterminer l'expression de cette parabole (polynôme de degré 2), on utilise l'interpolation lagrangienne. Le résultat peut être mis sous la forme : Un autre moyen d'arriver à ce résultat est d'appliquer les formules de Newton-Cotes avec n = 2. où où : (fr)
rdfs:label
  • Fórmula de Simpson (pt)
  • Mètode de Simpson (ca)
  • Méthode de Simpson (fr)
  • Simpsons regel (sv)
  • Метод Сімпсона (uk)
  • 辛普森積分法 (zh)
  • Fórmula de Simpson (pt)
  • Mètode de Simpson (ca)
  • Méthode de Simpson (fr)
  • Simpsons regel (sv)
  • Метод Сімпсона (uk)
  • 辛普森積分法 (zh)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of