Cet article concerne la liste des accélérateurs de particules utilisés pour les expériences de physique des particules. Les tout premiers accélérateurs ont été surtout utilisés en physique nucléaire. Dans l'histoire de la physique des particules, les rayons cosmiques ont été les premiers fournisseurs de particules (astroparticules) à très haute énergie. La radioactivité ne produit pas de tels projectiles. Les rayons cosmiques ont l'inconvénient d'être rares et d'avoir des énergies imprévisibles (jusqu'à 108TeV soit 100 millions de fois l'énergie des particules du Tevatron). Pour explorer le noyau, comme pour produire des particules, les expérimentateurs souhaitaient disposer de faisceaux de particules connues, animées d'une énergie connue, et maîtriser ainsi les conditions d'expérience. C'

Property Value
dbo:abstract
  • Cet article concerne la liste des accélérateurs de particules utilisés pour les expériences de physique des particules. Les tout premiers accélérateurs ont été surtout utilisés en physique nucléaire. Dans l'histoire de la physique des particules, les rayons cosmiques ont été les premiers fournisseurs de particules (astroparticules) à très haute énergie. La radioactivité ne produit pas de tels projectiles. Les rayons cosmiques ont l'inconvénient d'être rares et d'avoir des énergies imprévisibles (jusqu'à 108TeV soit 100 millions de fois l'énergie des particules du Tevatron). Pour explorer le noyau, comme pour produire des particules, les expérimentateurs souhaitaient disposer de faisceaux de particules connues, animées d'une énergie connue, et maîtriser ainsi les conditions d'expérience. C'est pourquoi la technique des accélérateurs a connu, après la Seconde Guerre mondiale, des perfectionnements successifs grâce auxquels ces instruments ont pratiquement supplanté les rayons cosmiques comme sources de projectiles à haute énergie. Les accélérateurs de particules ont été construits en tenant compte des 3 idées simples suivantes : * Ils n'accélèrent que les particules porteuses d'une charge électrique, sensibles aux champs électriques et magnétiques que la technologie sait produire et utiliser. * Les particules accélérées doivent rester stables (ne pas se désintégrer) pendant l'accélération. L'électron et le proton, le positron et l'antiproton répondent à ces conditions. Les ions lourds sont chargés et stables mais mal adaptés à l'étude des particules. * Les particules doivent circuler dans un vide suffisant pour ne pas heurter une molécule qui perturberait leur trajectoire. Remarque : dans cette liste, un même accélérateur peut apparaître deux fois (ou plus) dans le même tableau, par exemple avant et après une modification ou une amélioration, et/ou dans deux tableaux (ou plus), selon qu’il a été transformé d’un type en un autre ou bien s’il peut fonctionner selon deux modes. Ainsi, le Tevatron apparaît à trois reprises : une fois dans le tableau "accélérateurs à cible fixe" et deux fois dans le tableau "collisionneurs de Hadrons". Autre exemple, le Large Hadron Collider peut produire des collisions entre protons comme des collisions entre ions, d’où sa présence dans les deux tableaux correspondants. (fr)
  • Cet article concerne la liste des accélérateurs de particules utilisés pour les expériences de physique des particules. Les tout premiers accélérateurs ont été surtout utilisés en physique nucléaire. Dans l'histoire de la physique des particules, les rayons cosmiques ont été les premiers fournisseurs de particules (astroparticules) à très haute énergie. La radioactivité ne produit pas de tels projectiles. Les rayons cosmiques ont l'inconvénient d'être rares et d'avoir des énergies imprévisibles (jusqu'à 108TeV soit 100 millions de fois l'énergie des particules du Tevatron). Pour explorer le noyau, comme pour produire des particules, les expérimentateurs souhaitaient disposer de faisceaux de particules connues, animées d'une énergie connue, et maîtriser ainsi les conditions d'expérience. C'est pourquoi la technique des accélérateurs a connu, après la Seconde Guerre mondiale, des perfectionnements successifs grâce auxquels ces instruments ont pratiquement supplanté les rayons cosmiques comme sources de projectiles à haute énergie. Les accélérateurs de particules ont été construits en tenant compte des 3 idées simples suivantes : * Ils n'accélèrent que les particules porteuses d'une charge électrique, sensibles aux champs électriques et magnétiques que la technologie sait produire et utiliser. * Les particules accélérées doivent rester stables (ne pas se désintégrer) pendant l'accélération. L'électron et le proton, le positron et l'antiproton répondent à ces conditions. Les ions lourds sont chargés et stables mais mal adaptés à l'étude des particules. * Les particules doivent circuler dans un vide suffisant pour ne pas heurter une molécule qui perturberait leur trajectoire. Remarque : dans cette liste, un même accélérateur peut apparaître deux fois (ou plus) dans le même tableau, par exemple avant et après une modification ou une amélioration, et/ou dans deux tableaux (ou plus), selon qu’il a été transformé d’un type en un autre ou bien s’il peut fonctionner selon deux modes. Ainsi, le Tevatron apparaît à trois reprises : une fois dans le tableau "accélérateurs à cible fixe" et deux fois dans le tableau "collisionneurs de Hadrons". Autre exemple, le Large Hadron Collider peut produire des collisions entre protons comme des collisions entre ions, d’où sa présence dans les deux tableaux correspondants. (fr)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 1946899 (xsd:integer)
dbo:wikiPageLength
  • 22150 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 191374225 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:fr
  • PETRA (fr)
  • Beijing Spectrometer III (fr)
  • PETRA (fr)
  • Beijing Spectrometer III (fr)
prop-fr:lang
  • en (fr)
  • en (fr)
prop-fr:langue
  • en (fr)
  • en (fr)
prop-fr:texte
  • Beijing Spectrometer III (fr)
  • Beijing Spectrometer III (fr)
prop-fr:trad
  • Positron-Electron Tandem Ring Accelerator (fr)
  • BES III (fr)
  • Positron-Electron Tandem Ring Accelerator (fr)
  • BES III (fr)
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • Cet article concerne la liste des accélérateurs de particules utilisés pour les expériences de physique des particules. Les tout premiers accélérateurs ont été surtout utilisés en physique nucléaire. Dans l'histoire de la physique des particules, les rayons cosmiques ont été les premiers fournisseurs de particules (astroparticules) à très haute énergie. La radioactivité ne produit pas de tels projectiles. Les rayons cosmiques ont l'inconvénient d'être rares et d'avoir des énergies imprévisibles (jusqu'à 108TeV soit 100 millions de fois l'énergie des particules du Tevatron). Pour explorer le noyau, comme pour produire des particules, les expérimentateurs souhaitaient disposer de faisceaux de particules connues, animées d'une énergie connue, et maîtriser ainsi les conditions d'expérience. C' (fr)
  • Cet article concerne la liste des accélérateurs de particules utilisés pour les expériences de physique des particules. Les tout premiers accélérateurs ont été surtout utilisés en physique nucléaire. Dans l'histoire de la physique des particules, les rayons cosmiques ont été les premiers fournisseurs de particules (astroparticules) à très haute énergie. La radioactivité ne produit pas de tels projectiles. Les rayons cosmiques ont l'inconvénient d'être rares et d'avoir des énergies imprévisibles (jusqu'à 108TeV soit 100 millions de fois l'énergie des particules du Tevatron). Pour explorer le noyau, comme pour produire des particules, les expérimentateurs souhaitaient disposer de faisceaux de particules connues, animées d'une énergie connue, et maîtriser ainsi les conditions d'expérience. C' (fr)
rdfs:label
  • List of accelerators in particle physics (en)
  • Список ускорителей частиц (ru)
  • Liste des accélérateurs en physique des particules (fr)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of