L'imagerie photoacoustique, en tant que modalité de l'imagerie biomédicale, est basée sur l'effet photoacoustique. Dans l'imagerie photoacoustique, des impulsions laser non ionisantes sont émises à l'intérieur de tissus biologiques ; lorsque ce sont des impulsions radiofréquences qui sont employées, on parle alors de thermoacoustique. Une partie de l'énergie émise par le laser est alors convertie en chaleur, entraînant un régime transitoire thermoélastique et produisant l'émission d'ultrasons. Les ultrasons générés sont alors mesurés par un transducteur ultrasonore, puis analysés dans le but de générer des images. L’absorption optique est intimement liée aux propriétés physiologiques, citons par exemple la concentration en hémoglobine et la saturation en oxygène. L'amplitude de l'émission

Property Value
dbo:abstract
  • L'imagerie photoacoustique, en tant que modalité de l'imagerie biomédicale, est basée sur l'effet photoacoustique. Dans l'imagerie photoacoustique, des impulsions laser non ionisantes sont émises à l'intérieur de tissus biologiques ; lorsque ce sont des impulsions radiofréquences qui sont employées, on parle alors de thermoacoustique. Une partie de l'énergie émise par le laser est alors convertie en chaleur, entraînant un régime transitoire thermoélastique et produisant l'émission d'ultrasons. Les ultrasons générés sont alors mesurés par un transducteur ultrasonore, puis analysés dans le but de générer des images. L’absorption optique est intimement liée aux propriétés physiologiques, citons par exemple la concentration en hémoglobine et la saturation en oxygène. L'amplitude de l'émission d'ultrasons étant proportionnelle à la quantité d'énergie transférée, la mesure révèle les contrastes d'absorption optique des spécificités physiologiques. Des images 2D ou 3D de la zone ciblée peuvent alors être calculées. La Fig. 1 est une illustration montrant les bases du principe de l'imagerie photoacoustique. L'absorption optique des tissus biologiques peut provenir de molécules endogènes telles que l'hémoglobine, la mélanine ou bien exogènes comme les agents de contrastes. À titre d'exemple la Fig. 2 montre le spectre d'absorption optique de l'hémoglobine oxygénée (HbO2) et de l'hémoglobine désoxygénée (Hb) dans le spectre visible et le proche infrarouge. Du fait que le sang a un coefficient d'absorption d'un ordre de grandeur plus important que les tissus environnants, le contraste endogène est donc suffisant pour la visualisation des vaisseaux sanguins. Les récentes études ont montré que l'imagerie photoacoustique peut être réalisée in vivo pour la surveillance de l'angiogenèse des tumeurs, la cartographie de l'oxygénation du sang, l'imagerie fonctionnelle du cerveau, la détection de mélanome sur la peau, etc. (fr)
  • L'imagerie photoacoustique, en tant que modalité de l'imagerie biomédicale, est basée sur l'effet photoacoustique. Dans l'imagerie photoacoustique, des impulsions laser non ionisantes sont émises à l'intérieur de tissus biologiques ; lorsque ce sont des impulsions radiofréquences qui sont employées, on parle alors de thermoacoustique. Une partie de l'énergie émise par le laser est alors convertie en chaleur, entraînant un régime transitoire thermoélastique et produisant l'émission d'ultrasons. Les ultrasons générés sont alors mesurés par un transducteur ultrasonore, puis analysés dans le but de générer des images. L’absorption optique est intimement liée aux propriétés physiologiques, citons par exemple la concentration en hémoglobine et la saturation en oxygène. L'amplitude de l'émission d'ultrasons étant proportionnelle à la quantité d'énergie transférée, la mesure révèle les contrastes d'absorption optique des spécificités physiologiques. Des images 2D ou 3D de la zone ciblée peuvent alors être calculées. La Fig. 1 est une illustration montrant les bases du principe de l'imagerie photoacoustique. L'absorption optique des tissus biologiques peut provenir de molécules endogènes telles que l'hémoglobine, la mélanine ou bien exogènes comme les agents de contrastes. À titre d'exemple la Fig. 2 montre le spectre d'absorption optique de l'hémoglobine oxygénée (HbO2) et de l'hémoglobine désoxygénée (Hb) dans le spectre visible et le proche infrarouge. Du fait que le sang a un coefficient d'absorption d'un ordre de grandeur plus important que les tissus environnants, le contraste endogène est donc suffisant pour la visualisation des vaisseaux sanguins. Les récentes études ont montré que l'imagerie photoacoustique peut être réalisée in vivo pour la surveillance de l'angiogenèse des tumeurs, la cartographie de l'oxygénation du sang, l'imagerie fonctionnelle du cerveau, la détection de mélanome sur la peau, etc. (fr)
dbo:thumbnail
dbo:wikiPageID
  • 8857782 (xsd:integer)
dbo:wikiPageLength
  • 13597 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 175565516 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • L'imagerie photoacoustique, en tant que modalité de l'imagerie biomédicale, est basée sur l'effet photoacoustique. Dans l'imagerie photoacoustique, des impulsions laser non ionisantes sont émises à l'intérieur de tissus biologiques ; lorsque ce sont des impulsions radiofréquences qui sont employées, on parle alors de thermoacoustique. Une partie de l'énergie émise par le laser est alors convertie en chaleur, entraînant un régime transitoire thermoélastique et produisant l'émission d'ultrasons. Les ultrasons générés sont alors mesurés par un transducteur ultrasonore, puis analysés dans le but de générer des images. L’absorption optique est intimement liée aux propriétés physiologiques, citons par exemple la concentration en hémoglobine et la saturation en oxygène. L'amplitude de l'émission (fr)
  • L'imagerie photoacoustique, en tant que modalité de l'imagerie biomédicale, est basée sur l'effet photoacoustique. Dans l'imagerie photoacoustique, des impulsions laser non ionisantes sont émises à l'intérieur de tissus biologiques ; lorsque ce sont des impulsions radiofréquences qui sont employées, on parle alors de thermoacoustique. Une partie de l'énergie émise par le laser est alors convertie en chaleur, entraînant un régime transitoire thermoélastique et produisant l'émission d'ultrasons. Les ultrasons générés sont alors mesurés par un transducteur ultrasonore, puis analysés dans le but de générer des images. L’absorption optique est intimement liée aux propriétés physiologiques, citons par exemple la concentration en hémoglobine et la saturation en oxygène. L'amplitude de l'émission (fr)
rdfs:label
  • Imagen fotoacústica en biomedicina (es)
  • Imagerie photoacoustique pour la biomédecine (fr)
  • 医学光声成像 (zh)
  • Imagen fotoacústica en biomedicina (es)
  • Imagerie photoacoustique pour la biomédecine (fr)
  • 医学光声成像 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is oa:hasTarget of
is foaf:primaryTopic of