En mathématiques, un espace gradué est un espace vectoriel ou plus généralement un groupe abélien muni d'une décomposition en somme directe de sous-espaces, indexée par un ensemble d'entiers (naturels ou relatifs) ou par un groupe cyclique. Une graduation est la donnée d'une telle décomposition. Une graduation facilite souvent les calculs, notamment en algèbre homologique, en ne travaillant qu'avec des éléments homogènes en chaque degré, ce qui permet par exemple de se ramener dans bien des cas à des espaces de dimension finie.

Property Value
dbo:abstract
  • En mathématiques, un espace gradué est un espace vectoriel ou plus généralement un groupe abélien muni d'une décomposition en somme directe de sous-espaces, indexée par un ensemble d'entiers (naturels ou relatifs) ou par un groupe cyclique. Une graduation est la donnée d'une telle décomposition. Une graduation facilite souvent les calculs, notamment en algèbre homologique, en ne travaillant qu'avec des éléments homogènes en chaque degré, ce qui permet par exemple de se ramener dans bien des cas à des espaces de dimension finie. Le gradué associé à une filtration est l'espace obtenu comme somme des quotients de termes consécutifs. La graduation peut être compatible avec d'autres structures, comme la multiplication dans une algèbre graduée, ou la différentielle dans un complexe de chaines. (fr)
  • En mathématiques, un espace gradué est un espace vectoriel ou plus généralement un groupe abélien muni d'une décomposition en somme directe de sous-espaces, indexée par un ensemble d'entiers (naturels ou relatifs) ou par un groupe cyclique. Une graduation est la donnée d'une telle décomposition. Une graduation facilite souvent les calculs, notamment en algèbre homologique, en ne travaillant qu'avec des éléments homogènes en chaque degré, ce qui permet par exemple de se ramener dans bien des cas à des espaces de dimension finie. Le gradué associé à une filtration est l'espace obtenu comme somme des quotients de termes consécutifs. La graduation peut être compatible avec d'autres structures, comme la multiplication dans une algèbre graduée, ou la différentielle dans un complexe de chaines. (fr)
dbo:wikiPageID
  • 4297001 (xsd:integer)
dbo:wikiPageLength
  • 1915 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 112055248 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • En mathématiques, un espace gradué est un espace vectoriel ou plus généralement un groupe abélien muni d'une décomposition en somme directe de sous-espaces, indexée par un ensemble d'entiers (naturels ou relatifs) ou par un groupe cyclique. Une graduation est la donnée d'une telle décomposition. Une graduation facilite souvent les calculs, notamment en algèbre homologique, en ne travaillant qu'avec des éléments homogènes en chaque degré, ce qui permet par exemple de se ramener dans bien des cas à des espaces de dimension finie. (fr)
  • En mathématiques, un espace gradué est un espace vectoriel ou plus généralement un groupe abélien muni d'une décomposition en somme directe de sous-espaces, indexée par un ensemble d'entiers (naturels ou relatifs) ou par un groupe cyclique. Une graduation est la donnée d'une telle décomposition. Une graduation facilite souvent les calculs, notamment en algèbre homologique, en ne travaillant qu'avec des éléments homogènes en chaque degré, ce qui permet par exemple de se ramener dans bien des cas à des espaces de dimension finie. (fr)
rdfs:label
  • Espace gradué (fr)
  • Graded vector space (en)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of