Le double cylindre, ou duocylindre, est un objet géométrique défini comme le produit cartésien de deux disques de rayons respectifs r1 et r2. On peut le représenter comme une région de l'espace euclidien à quatre dimensions délimitée par deux hypersurfaces : dans un repère cartésien convenable, c'est l'ensemble des points. Il constitue l'une des généralisations du cylindre de l'espace usuel, c'est-à-dire du produit cartésien d'un disque et d'un segment ; d'autres généralisations naturelles sont le cylindre sphérique et le cylindre cubique.

Property Value
dbo:abstract
  • Le double cylindre, ou duocylindre, est un objet géométrique défini comme le produit cartésien de deux disques de rayons respectifs r1 et r2. On peut le représenter comme une région de l'espace euclidien à quatre dimensions délimitée par deux hypersurfaces : dans un repère cartésien convenable, c'est l'ensemble des points. Il constitue l'une des généralisations du cylindre de l'espace usuel, c'est-à-dire du produit cartésien d'un disque et d'un segment ; d'autres généralisations naturelles sont le cylindre sphérique et le cylindre cubique. Dans la représentation canonique du double cylindre, les deux hypersurfaces qui le délimitent sont congruentes et ont pour intersection un tore de Clifford, appelé arête du double cylindre. (fr)
  • Le double cylindre, ou duocylindre, est un objet géométrique défini comme le produit cartésien de deux disques de rayons respectifs r1 et r2. On peut le représenter comme une région de l'espace euclidien à quatre dimensions délimitée par deux hypersurfaces : dans un repère cartésien convenable, c'est l'ensemble des points. Il constitue l'une des généralisations du cylindre de l'espace usuel, c'est-à-dire du produit cartésien d'un disque et d'un segment ; d'autres généralisations naturelles sont le cylindre sphérique et le cylindre cubique. Dans la représentation canonique du double cylindre, les deux hypersurfaces qui le délimitent sont congruentes et ont pour intersection un tore de Clifford, appelé arête du double cylindre. (fr)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 13660980 (xsd:integer)
dbo:wikiPageLength
  • 3350 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 181750482 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:art
  • Duocylinder (fr)
  • Duocylinder (fr)
prop-fr:id
  • 935956631 (xsd:integer)
prop-fr:lang
  • en (fr)
  • en (fr)
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • Le double cylindre, ou duocylindre, est un objet géométrique défini comme le produit cartésien de deux disques de rayons respectifs r1 et r2. On peut le représenter comme une région de l'espace euclidien à quatre dimensions délimitée par deux hypersurfaces : dans un repère cartésien convenable, c'est l'ensemble des points. Il constitue l'une des généralisations du cylindre de l'espace usuel, c'est-à-dire du produit cartésien d'un disque et d'un segment ; d'autres généralisations naturelles sont le cylindre sphérique et le cylindre cubique. (fr)
  • Le double cylindre, ou duocylindre, est un objet géométrique défini comme le produit cartésien de deux disques de rayons respectifs r1 et r2. On peut le représenter comme une région de l'espace euclidien à quatre dimensions délimitée par deux hypersurfaces : dans un repère cartésien convenable, c'est l'ensemble des points. Il constitue l'une des généralisations du cylindre de l'espace usuel, c'est-à-dire du produit cartésien d'un disque et d'un segment ; d'autres généralisations naturelles sont le cylindre sphérique et le cylindre cubique. (fr)
rdfs:label
  • Double cylindre (fr)
  • Duocylinder (en)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of