Property |
Value |
dbo:abstract
|
- Un cristal de Wigner est constitué d'un ensemble d'électrons, localisés sur une surface, selon une structure géométrique cristalline. Cette structure a été prédite par Eugene Wigner en 1934. Qualitativement, l'origine de cette structure peut se comprendre de la manière suivante. L'énergie potentielle de répulsion coulombienne entre les électrons varie de façon inversementproportionnelle à la distance moyenne entre les électrons. Par conséquent, en présence d'une densité uniforme de charges positives, qui neutralise la charge totale des électrons, la configuration la plus avantageuse du point de vue de l'énergie potentielle est celle qui maximise la distance moyenne entre les électrons pour une densité donnée. En deux dimensions, un arrangement cristallin permet de satisfaire à cette contrainte. Il existe cependant un effet antagoniste qui vient de la physique quantique. En effet, si les électrons sont confinés dans une cellule de taille égale au pas d'un réseau cristallin , la longueur d'onde de de Broglie de ces électrons sera de l'ordre de grandeur du pas de ce réseau. Il en résulte que les électrons auront une énergie cinétique moyenne : qui sera d'autant plus grande que la distance moyenne entre électrons sera petite. Pour obtenir un cristal de Wigner, il est nécessaire que l'énergie potentielle soit très grande devant l'énergie cinétique résultant de la localisation des électrons. On doit donc avoir : Il résulte de cette inégalité que le cristal de Wigner n'est stable que lorsque la distance moyenne entre électrons devient suffisamment grande comparée au rayon de Bohr. Des simulations Monte-Carlo quantique ont permis dans les années 1980 d'estimer la distance minimale entre électrons nécessaire pour obtenir le cristal de Wigner. Expérimentalement, le cristal de Wigner a pu être observé dans des hétérojonctions GaAs/GaAlAs sous champ magnétique. En 2021, un cristal de Wigner a été obtenu sans l'aide d'un champ magnétique. L'équipe d' a obtenu un cristal plan à structure triangulaire à partir d'une couche monoatomique de diséléniure de molybdène (MoSe2) en lui appliquant une tension électrique appropriée. (fr)
- Un cristal de Wigner est constitué d'un ensemble d'électrons, localisés sur une surface, selon une structure géométrique cristalline. Cette structure a été prédite par Eugene Wigner en 1934. Qualitativement, l'origine de cette structure peut se comprendre de la manière suivante. L'énergie potentielle de répulsion coulombienne entre les électrons varie de façon inversementproportionnelle à la distance moyenne entre les électrons. Par conséquent, en présence d'une densité uniforme de charges positives, qui neutralise la charge totale des électrons, la configuration la plus avantageuse du point de vue de l'énergie potentielle est celle qui maximise la distance moyenne entre les électrons pour une densité donnée. En deux dimensions, un arrangement cristallin permet de satisfaire à cette contrainte. Il existe cependant un effet antagoniste qui vient de la physique quantique. En effet, si les électrons sont confinés dans une cellule de taille égale au pas d'un réseau cristallin , la longueur d'onde de de Broglie de ces électrons sera de l'ordre de grandeur du pas de ce réseau. Il en résulte que les électrons auront une énergie cinétique moyenne : qui sera d'autant plus grande que la distance moyenne entre électrons sera petite. Pour obtenir un cristal de Wigner, il est nécessaire que l'énergie potentielle soit très grande devant l'énergie cinétique résultant de la localisation des électrons. On doit donc avoir : Il résulte de cette inégalité que le cristal de Wigner n'est stable que lorsque la distance moyenne entre électrons devient suffisamment grande comparée au rayon de Bohr. Des simulations Monte-Carlo quantique ont permis dans les années 1980 d'estimer la distance minimale entre électrons nécessaire pour obtenir le cristal de Wigner. Expérimentalement, le cristal de Wigner a pu être observé dans des hétérojonctions GaAs/GaAlAs sous champ magnétique. En 2021, un cristal de Wigner a été obtenu sans l'aide d'un champ magnétique. L'équipe d' a obtenu un cristal plan à structure triangulaire à partir d'une couche monoatomique de diséléniure de molybdène (MoSe2) en lui appliquant une tension électrique appropriée. (fr)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 5490 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-fr:année
| |
prop-fr:auteur
| |
prop-fr:commentaire
| |
prop-fr:date
|
- 1938 (xsd:integer)
- 1978 (xsd:integer)
- 1988 (xsd:integer)
- 1990 (xsd:integer)
- 1991 (xsd:integer)
- 2016-12-30 (xsd:date)
|
prop-fr:doi
|
- 10.103900 (xsd:double)
- 10.110300 (xsd:double)
|
prop-fr:etAl.
| |
prop-fr:jour
|
- 1 (xsd:integer)
- 22 (xsd:integer)
- 24 (xsd:integer)
- 27 (xsd:integer)
|
prop-fr:libellé
|
- Andrei 1988 (fr)
- Ceperley 1978 (fr)
- Goldman 1990 (fr)
- Sacco 2016 (fr)
- Wigner 1934 (fr)
- Wigner 1938 (fr)
- Williams 1991 (fr)
- Andrei 1988 (fr)
- Ceperley 1978 (fr)
- Goldman 1990 (fr)
- Sacco 2016 (fr)
- Wigner 1934 (fr)
- Wigner 1938 (fr)
- Williams 1991 (fr)
|
prop-fr:mois
|
- 6 (xsd:integer)
- 10 (xsd:integer)
- 12 (xsd:integer)
|
prop-fr:page
|
- 678 (xsd:integer)
- 1002 (xsd:integer)
- 2189 (xsd:integer)
- 2765 (xsd:integer)
- 3126 (xsd:integer)
- 3285 (xsd:integer)
|
prop-fr:périodique
| |
prop-fr:titre
|
- Conduction threshold and pinning frequency of magnetically induced Wigner solid (fr)
- Effects of the electron interaction on the energy levels of electrons in metals (fr)
- Observation of a Magnetically Induced Wigner Solid (fr)
- On the Interaction of Electrons in Metals (fr)
- Evidence for two-dimentional quantum Wigner crystal (fr)
- Le cristal d'électrons de Wigner existe bel et bien (fr)
- Ground state of the fermion one-component plasma: A Monte Carlo study in two and three dimensions (fr)
- Conduction threshold and pinning frequency of magnetically induced Wigner solid (fr)
- Effects of the electron interaction on the energy levels of electrons in metals (fr)
- Observation of a Magnetically Induced Wigner Solid (fr)
- On the Interaction of Electrons in Metals (fr)
- Evidence for two-dimentional quantum Wigner crystal (fr)
- Le cristal d'électrons de Wigner existe bel et bien (fr)
- Ground state of the fermion one-component plasma: A Monte Carlo study in two and three dimensions (fr)
|
prop-fr:url
| |
prop-fr:volume
|
- 18 (xsd:integer)
- 34 (xsd:integer)
- 46 (xsd:integer)
- 60 (xsd:integer)
- 65 (xsd:integer)
- 66 (xsd:integer)
|
prop-fr:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- Un cristal de Wigner est constitué d'un ensemble d'électrons, localisés sur une surface, selon une structure géométrique cristalline. Cette structure a été prédite par Eugene Wigner en 1934. Qualitativement, l'origine de cette structure peut se comprendre de la manière suivante. L'énergie potentielle de répulsion coulombienne entre les électrons varie de façon inversementproportionnelle à la distance moyenne entre les électrons. Par conséquent, en présence d'une densité uniforme de charges positives, qui neutralise la charge totale des électrons, la configuration la plus avantageuse du point de vue de l'énergie potentielle est celle qui maximise la distance moyenne entre les électrons pour une densité donnée. En deux dimensions, un arrangement cristallin permet de satisfaire à cette contra (fr)
- Un cristal de Wigner est constitué d'un ensemble d'électrons, localisés sur une surface, selon une structure géométrique cristalline. Cette structure a été prédite par Eugene Wigner en 1934. Qualitativement, l'origine de cette structure peut se comprendre de la manière suivante. L'énergie potentielle de répulsion coulombienne entre les électrons varie de façon inversementproportionnelle à la distance moyenne entre les électrons. Par conséquent, en présence d'une densité uniforme de charges positives, qui neutralise la charge totale des électrons, la configuration la plus avantageuse du point de vue de l'énergie potentielle est celle qui maximise la distance moyenne entre les électrons pour une densité donnée. En deux dimensions, un arrangement cristallin permet de satisfaire à cette contra (fr)
|
rdfs:label
|
- Cristal de Wigner (fr)
- Cristal de Wigner (pt)
- Cristallo di Wigner (it)
- Wigner crystal (en)
- Вигнеровский кристалл (ru)
- Вігнерівський кристал (uk)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageWikiLink
of | |
is oa:hasTarget
of | |
is foaf:primaryTopic
of | |