Property |
Value |
dbo:abstract
|
- En mécanique analytique, on dit qu'un système de N particules est soumis à une contrainte holonome s'il existe une équation algébrique caractérisant l'état du système, et dont les variables sont les vecteurs coordonnées des particules, pour . On écrit cette contrainte sous la forme . Si les contraintes sont modélisées par un système d'équations de ce type, on parle encore de contraintes holonomes. Une contrainte qui ne peut pas s'écrire sous cette forme est dite non holonome. Si l'équation de la contrainte holonome dépend du temps,, elle est dite rhéonome. Si elle n'en dépend pas, (fr)
- En mécanique analytique, on dit qu'un système de N particules est soumis à une contrainte holonome s'il existe une équation algébrique caractérisant l'état du système, et dont les variables sont les vecteurs coordonnées des particules, pour . On écrit cette contrainte sous la forme . Si les contraintes sont modélisées par un système d'équations de ce type, on parle encore de contraintes holonomes. Une contrainte qui ne peut pas s'écrire sous cette forme est dite non holonome. Si l'équation de la contrainte holonome dépend du temps,, elle est dite rhéonome. Si elle n'en dépend pas, (fr)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 7693 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-fr:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- En mécanique analytique, on dit qu'un système de N particules est soumis à une contrainte holonome s'il existe une équation algébrique caractérisant l'état du système, et dont les variables sont les vecteurs coordonnées des particules, pour . On écrit cette contrainte sous la forme . Si les contraintes sont modélisées par un système d'équations de ce type, on parle encore de contraintes holonomes. Une contrainte qui ne peut pas s'écrire sous cette forme est dite non holonome. (fr)
- En mécanique analytique, on dit qu'un système de N particules est soumis à une contrainte holonome s'il existe une équation algébrique caractérisant l'état du système, et dont les variables sont les vecteurs coordonnées des particules, pour . On écrit cette contrainte sous la forme . Si les contraintes sont modélisées par un système d'équations de ce type, on parle encore de contraintes holonomes. Une contrainte qui ne peut pas s'écrire sous cette forme est dite non holonome. (fr)
|
rdfs:label
|
- Contrainte holonome (fr)
- Restrição holonômica (pt)
- Układ holonomiczny (pl)
- Голономная связь (ru)
- Contrainte holonome (fr)
- Restrição holonômica (pt)
- Układ holonomiczny (pl)
- Голономная связь (ru)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageDisambiguates
of | |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is oa:hasTarget
of | |
is foaf:primaryTopic
of | |