Considérons un ensemble A muni d'une relation binaire ≤. Un sous-ensemble B de A est dit cofinal si : pour tout élément a de A, il existe un élément b de B tel que a ≤ b ;∀ a ∈ A, ∃ b ∈ B \ a ≤ b. La cofinalité de l'ensemble A est le cardinal du plus petit sous-ensemble cofinal de A. La cofinalité d'un ordinal limite est le plus petit ordinal tel qu'il existe une fonction non majorée. Cet ordinal est usuellement noté ou . Intuitivement, est le plus petit nombre de pas à faire pour arriver au bout de . Un cardinal qui est égal à sa cofinalité, comme ici, , est appelé cardinal régulier.

Property Value
dbo:abstract
  • Considérons un ensemble A muni d'une relation binaire ≤. Un sous-ensemble B de A est dit cofinal si : pour tout élément a de A, il existe un élément b de B tel que a ≤ b ;∀ a ∈ A, ∃ b ∈ B \ a ≤ b. La cofinalité de l'ensemble A est le cardinal du plus petit sous-ensemble cofinal de A. La cofinalité d'un ordinal limite est le plus petit ordinal tel qu'il existe une fonction non majorée. Cet ordinal est usuellement noté ou . Intuitivement, est le plus petit nombre de pas à faire pour arriver au bout de . Par exemple, on peut aller au bout de en pas, avec la fonction identité, mais on ne peut pas aller au bout de en un nombre fini de pas. On a donc . Un cardinal qui est égal à sa cofinalité, comme ici, , est appelé cardinal régulier. De même, on peut aller au bout de en pas mais on ne peut pas le faire en un nombre dénombrable de pas. On a donc ; qui est donc aussi un cardinal régulier. En revanche, on peut aller au bout de en pas, avec la fonction définie par , donc . Un cardinal qui n'est pas régulier, c'est-à-dire, qui n'est pas égal à sa cofinalité, comme ici est appelé cardinal singulier. (fr)
  • Considérons un ensemble A muni d'une relation binaire ≤. Un sous-ensemble B de A est dit cofinal si : pour tout élément a de A, il existe un élément b de B tel que a ≤ b ;∀ a ∈ A, ∃ b ∈ B \ a ≤ b. La cofinalité de l'ensemble A est le cardinal du plus petit sous-ensemble cofinal de A. La cofinalité d'un ordinal limite est le plus petit ordinal tel qu'il existe une fonction non majorée. Cet ordinal est usuellement noté ou . Intuitivement, est le plus petit nombre de pas à faire pour arriver au bout de . Par exemple, on peut aller au bout de en pas, avec la fonction identité, mais on ne peut pas aller au bout de en un nombre fini de pas. On a donc . Un cardinal qui est égal à sa cofinalité, comme ici, , est appelé cardinal régulier. De même, on peut aller au bout de en pas mais on ne peut pas le faire en un nombre dénombrable de pas. On a donc ; qui est donc aussi un cardinal régulier. En revanche, on peut aller au bout de en pas, avec la fonction définie par , donc . Un cardinal qui n'est pas régulier, c'est-à-dire, qui n'est pas égal à sa cofinalité, comme ici est appelé cardinal singulier. (fr)
dbo:wikiPageID
  • 10643027 (xsd:integer)
dbo:wikiPageLength
  • 6809 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 189953011 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:fr
  • Jack Silver (fr)
  • Théorie PCF (fr)
  • William Bigelow Easton (fr)
  • Jack Silver (fr)
  • Théorie PCF (fr)
  • William Bigelow Easton (fr)
prop-fr:langue
  • en (fr)
  • en (fr)
prop-fr:texte
  • théorie PCF (fr)
  • William B. Easton (fr)
  • théorie PCF (fr)
  • William B. Easton (fr)
prop-fr:trad
  • PCF theory (fr)
  • Jack Silver (fr)
  • William Bigelow Easton (fr)
  • PCF theory (fr)
  • Jack Silver (fr)
  • William Bigelow Easton (fr)
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • Considérons un ensemble A muni d'une relation binaire ≤. Un sous-ensemble B de A est dit cofinal si : pour tout élément a de A, il existe un élément b de B tel que a ≤ b ;∀ a ∈ A, ∃ b ∈ B \ a ≤ b. La cofinalité de l'ensemble A est le cardinal du plus petit sous-ensemble cofinal de A. La cofinalité d'un ordinal limite est le plus petit ordinal tel qu'il existe une fonction non majorée. Cet ordinal est usuellement noté ou . Intuitivement, est le plus petit nombre de pas à faire pour arriver au bout de . Un cardinal qui est égal à sa cofinalité, comme ici, , est appelé cardinal régulier. (fr)
  • Considérons un ensemble A muni d'une relation binaire ≤. Un sous-ensemble B de A est dit cofinal si : pour tout élément a de A, il existe un élément b de B tel que a ≤ b ;∀ a ∈ A, ∃ b ∈ B \ a ≤ b. La cofinalité de l'ensemble A est le cardinal du plus petit sous-ensemble cofinal de A. La cofinalité d'un ordinal limite est le plus petit ordinal tel qu'il existe une fonction non majorée. Cet ordinal est usuellement noté ou . Intuitivement, est le plus petit nombre de pas à faire pour arriver au bout de . Un cardinal qui est égal à sa cofinalité, comme ici, , est appelé cardinal régulier. (fr)
rdfs:label
  • Cofinalidad (es)
  • Cofinalidade (pt)
  • Cofinalitat (ca)
  • Cofinalité (fr)
  • Konfinalität (de)
  • Współkońcowość (pl)
  • 共尾性 (zh)
  • Cofinalidad (es)
  • Cofinalidade (pt)
  • Cofinalitat (ca)
  • Cofinalité (fr)
  • Konfinalität (de)
  • Współkońcowość (pl)
  • 共尾性 (zh)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of