dbo:abstract
|
- Le code de Hadamard est un code correcteur, nommé d'après Jacques Hadamard, à taux de transfert extrêmement faible mais à grande distance, couramment utilisé pour la détection et la correction d'erreurs lors de la transmission de messages sur des canaux très bruyants ou peu fiables. Dans la notation standard de la théorie du codage pour les codes en bloc, le code de Hadamard est un code , c'est-à-dire un code linéaire sur un alphabet binaire, a une longueur de bloc de , la longueur (ou la dimension) du message , et une distance minimale . Bien que la longueur du bloc soit très grande par rapport à la longueur du message, les erreurs peuvent être corrigées même dans des conditions extrêmement bruyantes. Étant un code localement déchiffrable, c'est-à-dire qu'il est possible de récupérer des parties du message original avec une forte probabilité, tout en ne regardant qu'une petite fraction du mot reçu, il possède de nombreuses applications dans la théorie de la complexité des calculs et en particulier dans la conception de preuves vérifiables par probabilité. De plus, comme la distance relative du code de Hadamard est de 1/2, il est possible de récupérer au maximum une fraction de 1/4 d'erreur. En utilisant le décodage de liste, il est cependant possible de calculer une courte liste de messages candidats possibles aussi longtemps que moins de des bits du mot reçu ont été corrompus. Grâce à ses propriétés mathématiques uniques, les codes Hadamard sont intensément étudiés dans des domaines tels que la théorie du codage, les mathématiques et l'informatique théorique, outre ses applications dans de nombreuses technologies et industries. (fr)
- Le code de Hadamard est un code correcteur, nommé d'après Jacques Hadamard, à taux de transfert extrêmement faible mais à grande distance, couramment utilisé pour la détection et la correction d'erreurs lors de la transmission de messages sur des canaux très bruyants ou peu fiables. Dans la notation standard de la théorie du codage pour les codes en bloc, le code de Hadamard est un code , c'est-à-dire un code linéaire sur un alphabet binaire, a une longueur de bloc de , la longueur (ou la dimension) du message , et une distance minimale . Bien que la longueur du bloc soit très grande par rapport à la longueur du message, les erreurs peuvent être corrigées même dans des conditions extrêmement bruyantes. Étant un code localement déchiffrable, c'est-à-dire qu'il est possible de récupérer des parties du message original avec une forte probabilité, tout en ne regardant qu'une petite fraction du mot reçu, il possède de nombreuses applications dans la théorie de la complexité des calculs et en particulier dans la conception de preuves vérifiables par probabilité. De plus, comme la distance relative du code de Hadamard est de 1/2, il est possible de récupérer au maximum une fraction de 1/4 d'erreur. En utilisant le décodage de liste, il est cependant possible de calculer une courte liste de messages candidats possibles aussi longtemps que moins de des bits du mot reçu ont été corrompus. Grâce à ses propriétés mathématiques uniques, les codes Hadamard sont intensément étudiés dans des domaines tels que la théorie du codage, les mathématiques et l'informatique théorique, outre ses applications dans de nombreuses technologies et industries. (fr)
|
rdfs:comment
|
- Le code de Hadamard est un code correcteur, nommé d'après Jacques Hadamard, à taux de transfert extrêmement faible mais à grande distance, couramment utilisé pour la détection et la correction d'erreurs lors de la transmission de messages sur des canaux très bruyants ou peu fiables. Grâce à ses propriétés mathématiques uniques, les codes Hadamard sont intensément étudiés dans des domaines tels que la théorie du codage, les mathématiques et l'informatique théorique, outre ses applications dans de nombreuses technologies et industries. (fr)
- Le code de Hadamard est un code correcteur, nommé d'après Jacques Hadamard, à taux de transfert extrêmement faible mais à grande distance, couramment utilisé pour la détection et la correction d'erreurs lors de la transmission de messages sur des canaux très bruyants ou peu fiables. Grâce à ses propriétés mathématiques uniques, les codes Hadamard sont intensément étudiés dans des domaines tels que la théorie du codage, les mathématiques et l'informatique théorique, outre ses applications dans de nombreuses technologies et industries. (fr)
|