Les algorithmes à estimation de distribution (Estimation of Distribution Algorithms, EDA, en anglais) forment une famille de métaheuristiques inspirée des algorithmes génétiques. Ils sont utilisés pour résoudre des problèmes d'optimisation, via la manipulation d'un échantillonnage de la fonction décrivant la qualité des solutions possibles. Comme toutes les métaheuristiques utilisant une population de points, ils sont itératifs.

Property Value
dbo:abstract
  • Les algorithmes à estimation de distribution (Estimation of Distribution Algorithms, EDA, en anglais) forment une famille de métaheuristiques inspirée des algorithmes génétiques. Ils sont utilisés pour résoudre des problèmes d'optimisation, via la manipulation d'un échantillonnage de la fonction décrivant la qualité des solutions possibles. Comme toutes les métaheuristiques utilisant une population de points, ils sont itératifs. À l'inverse des algorithmes évolutionnaires « classiques », le cœur de la méthode consiste à estimer les relations entre les différentes variables d'un problème d'optimisation, grâce à l'estimation d'une distribution de probabilité, associée à chaque point de l'échantillon. Ils n'emploient donc pas d'opérateurs de croisement ou de mutation, l'échantillon étant directement construit à partir des paramètres de distribution, estimés à l'itération précédente. (fr)
  • Les algorithmes à estimation de distribution (Estimation of Distribution Algorithms, EDA, en anglais) forment une famille de métaheuristiques inspirée des algorithmes génétiques. Ils sont utilisés pour résoudre des problèmes d'optimisation, via la manipulation d'un échantillonnage de la fonction décrivant la qualité des solutions possibles. Comme toutes les métaheuristiques utilisant une population de points, ils sont itératifs. À l'inverse des algorithmes évolutionnaires « classiques », le cœur de la méthode consiste à estimer les relations entre les différentes variables d'un problème d'optimisation, grâce à l'estimation d'une distribution de probabilité, associée à chaque point de l'échantillon. Ils n'emploient donc pas d'opérateurs de croisement ou de mutation, l'échantillon étant directement construit à partir des paramètres de distribution, estimés à l'itération précédente. (fr)
dbo:thumbnail
dbo:wikiPageID
  • 307608 (xsd:integer)
dbo:wikiPageLength
  • 14617 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 187709731 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdf:type
rdfs:comment
  • Les algorithmes à estimation de distribution (Estimation of Distribution Algorithms, EDA, en anglais) forment une famille de métaheuristiques inspirée des algorithmes génétiques. Ils sont utilisés pour résoudre des problèmes d'optimisation, via la manipulation d'un échantillonnage de la fonction décrivant la qualité des solutions possibles. Comme toutes les métaheuristiques utilisant une population de points, ils sont itératifs. (fr)
  • Les algorithmes à estimation de distribution (Estimation of Distribution Algorithms, EDA, en anglais) forment une famille de métaheuristiques inspirée des algorithmes génétiques. Ils sont utilisés pour résoudre des problèmes d'optimisation, via la manipulation d'un échantillonnage de la fonction décrivant la qualité des solutions possibles. Comme toutes les métaheuristiques utilisant une population de points, ils sont itératifs. (fr)
rdfs:label
  • Algorithme à estimation de distribution (fr)
  • Estimation of distribution algorithm (en)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of