Property |
Value |
dbo:abstract
|
- Les algorithmes d’optimisation cherchent à déterminer le jeu de paramètres d’entrée d’une fonction donnant à cette fonction la valeur maximale ou minimale. On cherchera par exemple la découpe optimale d’une tôle pour en fabriquer le plus grand nombre de boîtes de conserve possible (ou d’un tissu pour en faire le plus grand nombre de chemises possibles, etc.). Cette optimisation peut se faire sans contrainte ou sous contrainte, le second cas se ramenant au premier dans le cas des fonctions dérivables par la méthode du multiplicateur de Lagrange (et des fonctions non-dérivables par l’algorithme d’Everett). (fr)
- Les algorithmes d’optimisation cherchent à déterminer le jeu de paramètres d’entrée d’une fonction donnant à cette fonction la valeur maximale ou minimale. On cherchera par exemple la découpe optimale d’une tôle pour en fabriquer le plus grand nombre de boîtes de conserve possible (ou d’un tissu pour en faire le plus grand nombre de chemises possibles, etc.). Cette optimisation peut se faire sans contrainte ou sous contrainte, le second cas se ramenant au premier dans le cas des fonctions dérivables par la méthode du multiplicateur de Lagrange (et des fonctions non-dérivables par l’algorithme d’Everett). (fr)
|
dbo:isPartOf
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 2529 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-fr:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- Les algorithmes d’optimisation cherchent à déterminer le jeu de paramètres d’entrée d’une fonction donnant à cette fonction la valeur maximale ou minimale. On cherchera par exemple la découpe optimale d’une tôle pour en fabriquer le plus grand nombre de boîtes de conserve possible (ou d’un tissu pour en faire le plus grand nombre de chemises possibles, etc.). Cette optimisation peut se faire sans contrainte ou sous contrainte, le second cas se ramenant au premier dans le cas des fonctions dérivables par la méthode du multiplicateur de Lagrange (et des fonctions non-dérivables par l’algorithme d’Everett). (fr)
- Les algorithmes d’optimisation cherchent à déterminer le jeu de paramètres d’entrée d’une fonction donnant à cette fonction la valeur maximale ou minimale. On cherchera par exemple la découpe optimale d’une tôle pour en fabriquer le plus grand nombre de boîtes de conserve possible (ou d’un tissu pour en faire le plus grand nombre de chemises possibles, etc.). Cette optimisation peut se faire sans contrainte ou sous contrainte, le second cas se ramenant au premier dans le cas des fonctions dérivables par la méthode du multiplicateur de Lagrange (et des fonctions non-dérivables par l’algorithme d’Everett). (fr)
|
rdfs:label
|
- Algorithme d'optimisation (fr)
- Algorithme d'optimisation (fr)
|
rdfs:seeAlso
| |
rdfs:subClassOf
| |
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is oa:hasTarget
of | |
is foaf:primaryTopic
of | |