En mécanique hamiltonienne, une transformation canonique est un changement des coordonnées canoniques (q, p, t) → (Q, P, t) qui conserve la forme des équations de Hamilton, sans pour autant nécessairement conserver le Hamiltonien en lui-même. Les transformations canoniques sont utiles pour les équations de Hamilton-Jacobi (une technique utile pour calculer les quantités conservées) et le théorème de Liouville (à la base de la mécanique statistique classique).

Property Value
dbo:abstract
  • En mécanique hamiltonienne, une transformation canonique est un changement des coordonnées canoniques (q, p, t) → (Q, P, t) qui conserve la forme des équations de Hamilton, sans pour autant nécessairement conserver le Hamiltonien en lui-même. Les transformations canoniques sont utiles pour les équations de Hamilton-Jacobi (une technique utile pour calculer les quantités conservées) et le théorème de Liouville (à la base de la mécanique statistique classique). La mécanique lagrangienne étant basée sur les coordonnées généralisées, les transformations des coordonnées q → Q n'affectent pas les équations de Lagrange, et donc pas la forme des équations de Hamilton, si l'on change en même temps le moment par une transformée de Legendre en : Ainsi, les changements de coordonnées sont des sortes de transformations canoniques. Néanmoins, la classe des transformations canoniques est bien plus grande, car les coordonnées généralisées de départ, les moments et même le temps peuvent être combinés pour former de nouvelles coordonnées généralisées et de nouveaux moments. Les transformations canoniques n'impliquant pas explicitement le temps sont appelées transformations canoniques restreintes (de nombreux ouvrages se limitent à ce type de transformations). (fr)
  • En mécanique hamiltonienne, une transformation canonique est un changement des coordonnées canoniques (q, p, t) → (Q, P, t) qui conserve la forme des équations de Hamilton, sans pour autant nécessairement conserver le Hamiltonien en lui-même. Les transformations canoniques sont utiles pour les équations de Hamilton-Jacobi (une technique utile pour calculer les quantités conservées) et le théorème de Liouville (à la base de la mécanique statistique classique). La mécanique lagrangienne étant basée sur les coordonnées généralisées, les transformations des coordonnées q → Q n'affectent pas les équations de Lagrange, et donc pas la forme des équations de Hamilton, si l'on change en même temps le moment par une transformée de Legendre en : Ainsi, les changements de coordonnées sont des sortes de transformations canoniques. Néanmoins, la classe des transformations canoniques est bien plus grande, car les coordonnées généralisées de départ, les moments et même le temps peuvent être combinés pour former de nouvelles coordonnées généralisées et de nouveaux moments. Les transformations canoniques n'impliquant pas explicitement le temps sont appelées transformations canoniques restreintes (de nombreux ouvrages se limitent à ce type de transformations). (fr)
dbo:wikiPageID
  • 745348 (xsd:integer)
dbo:wikiPageLength
  • 6106 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 179675930 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • En mécanique hamiltonienne, une transformation canonique est un changement des coordonnées canoniques (q, p, t) → (Q, P, t) qui conserve la forme des équations de Hamilton, sans pour autant nécessairement conserver le Hamiltonien en lui-même. Les transformations canoniques sont utiles pour les équations de Hamilton-Jacobi (une technique utile pour calculer les quantités conservées) et le théorème de Liouville (à la base de la mécanique statistique classique). (fr)
  • En mécanique hamiltonienne, une transformation canonique est un changement des coordonnées canoniques (q, p, t) → (Q, P, t) qui conserve la forme des équations de Hamilton, sans pour autant nécessairement conserver le Hamiltonien en lui-même. Les transformations canoniques sont utiles pour les équations de Hamilton-Jacobi (une technique utile pour calculer les quantités conservées) et le théorème de Liouville (à la base de la mécanique statistique classique). (fr)
rdfs:label
  • Transformació canònica (ca)
  • Transformation canonique (fr)
  • 正則變換 (zh)
  • Transformació canònica (ca)
  • Transformation canonique (fr)
  • 正則變換 (zh)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of