Le problème de Monty Hall est un casse-tête probabiliste librement inspiré du jeu télévisé américain Let's Make a Deal. Il est simple dans son énoncé mais non intuitif dans sa résolution et c'est pourquoi on parle parfois à son sujet de paradoxe de Monty Hall. Il porte le nom de celui qui a présenté ce jeu aux États-Unis pendant treize ans, Monty Hall.

PropertyValue
dbpedia-owl:abstract
  • Le problème de Monty Hall est un casse-tête probabiliste librement inspiré du jeu télévisé américain Let's Make a Deal. Il est simple dans son énoncé mais non intuitif dans sa résolution et c'est pourquoi on parle parfois à son sujet de paradoxe de Monty Hall. Il porte le nom de celui qui a présenté ce jeu aux États-Unis pendant treize ans, Monty Hall.
  • De opmaak van dit artikel is nog niet in overeenstemming met de conventies van Wikipedia. Mogelijk is ook de spelling of het taalgebruik niet in orde. Men wordt uitgenodigd deze pagina aan te passen.Opgegeven reden: Verbindingen aanbrengen tussen tekstonderdelen en verantwoorde bronnen; ev. ook schrijfstijl ("we"?)Het driedeurenprobleem is een probleem uit de kansrekening en speltheorie dat vermoedelijk gebaseerd is op het eerder door Martin Gardner gepubliceerde probleem "De drie gevangenen". Het vraagstuk kan gezien worden als een paradox: er is geen logische tegenstrijdigheid, maar voor veel mensen gaat het resultaat in tegen hun intuïtie.Het kreeg bekendheid door de Amerikaanse spelshow Let's Make a Deal met presentator Monty Hall; om die reden spreekt men in het Engels over het Monty Hall problem. In Nederland wordt het ook wel het Willem Ruisprobleem genoemd, naar de spelshowpresentator Willem Ruis, hoewel in zijn show gewerkt werd met vijf deuren en het spelprincipe anders was.De formulering van het probleem, zoals het in september 1990 was gepubliceerd als ingezonden brief voor de rubriek Ask Marilyn van Marilyn vos Savant in het tijdschrift Parade luidt:Vos Savant verduidelijkte dat de presentator in alle gevallen, dus zowel als de deelnemer de juiste deur kiest dan wel een verkeerde, een andere deur opent waarachter een geit staat en dat hij de deelnemer vervolgens altijd aanbiedt om van deur te wisselen. Belangrijk daarbij is dat de presentator weet achter welke deur de auto staat.Door deze publicatie kreeg het probleem wereldwijd grote bekendheid. Eerder al, in 1975, was het probleem geformuleerd door Steve Selvin in een brief aan het tijdschrift The American Statistician van de American Statistical Association naar aanleiding van de spelshow Let's Make a Deal. In een volgende brief noemde Selvin het het Monty Hall problem.
  • A Monty Hall-paradoxon egy valószínűségi paradoxon, ami az Amerikai Egyesült Államokban futott Let's Make a Deal (Kössünk üzletet) című televíziós vetélkedő utolsó feladatán alapul, nevét a vetélkedő műsorvezetőjéről, Monty Hallról kapta. (A műsor magyar változtának címe Zsákbamacska volt, és Rózsa György vezette.)A műsor végén a játékosnak mutatnak három csukott ajtót, amelyek közül kettő mögött egy-egy kecske van, a harmadik mögött viszont egy vadonatúj autó. A játékos nyereménye az, ami az általa kiválasztott ajtó mögött van. Azonban a választás meg van egy kicsit bonyolítva. Először a játékos csak rámutat az egyik ajtóra, de mielőtt valóban kinyitná, a műsorvezető a másik két ajtó közül kinyit egyet, amelyik mögött nem az autó van (a játékvezető tudja, melyik ajtó mögött mi van), majd megkérdezi a játékost, hogy akar-e módosítani a választásán. A játékos ezután vagy változtat, vagy nem, végül kinyílik az így kiválasztott ajtó, mögötte a nyereménnyel. A paradoxon nagy kérdése az, hogy érdemes-e változtatni, illetve hogy számít-e ez egyáltalán.Egyszerű valószínűségszámítási eszközökkel megmutatható, hogy igen, mindig érdemes váltani, ez azonban annyira ellentmond a józan észnek, hogy a problémát paradoxonnak tekinthetjük.
  • Masalah Monty Hall adalah sebuah teka-teki yang melibatkan probabilitas dan berasal dari sebuah acara permainan Amerika Let's Make a Deal. Nama masalah ini berasal dari nama pembawa acara tersebut, Monty Hall. Masalah ini juga disebut sebagai paradoks Monty Hall; ia adalah paradoks dalam artian penyelesaian masalah tersebut adalah berlawanan dengan intuisi seseorang.Pernyataan yang terkenal dari masalah ini dipublikasikan di majalah Parade:Terjemahannya:Oleh karena pemain tidak tahu apa yang ada di belakang kedua pintu sisanya, kebanyakan orang akan berasumsi bahwa setiap pintu akan memiliki probabilitas yang sama dan mengambil kesimpulan bahwa mengalihkan pilihan tidak akan menaikkan probabilitas pemain untuk memenangkan mobil tersebut dari 1/3 menjadi 2/3.Ketika masalah dan penyelesaiannya muncul di Parade, sekitar 10.000 pembaca, termasuk beratus-ratus profesor matematika, menulis surat kepada majalah tersebut dan mengklaim penyelesaian yang dipublikasikan adalah salah. Beberapa kontroversi ini disebabkan oleh pernyataan Parade atas masalah ini yang ambigu secara teknik. Namun, bahkan jika masalah ini dinyatakan secara tidak ambigu dan disertai dengan penjelasan-penjelasan, simulasi-simulasi, dan bukti matematika formal, banyak orang yang masih tidak percaya akan jawaban masalah tersebut.
  • Das Ziegenproblem, Drei-Türen-Problem, Monty-Hall-Problem oder Monty-Hall-Dilemma ist eine Aufgabe mit Bezug zur Wahrscheinlichkeitstheorie. Die Aufgabenstellung ist lose der Spielshow Let’s Make a Deal nachempfunden, welche im deutschen Sprachraum in der Variante Geh aufs Ganze! bekannt wurde. Die Bezeichnungen beziehen sich auf Monty Hall, den Moderator von Let’s Make a Deal, oder auf die Ziegen, die in einer bekannten Problemformulierung neben dem richtigen Preis, einem Auto, als Spottpreise zu gewinnen sind.Das Ziegenproblem wird oft als Beispiel dafür herangezogen, dass der menschliche Verstand zu Trugschlüssen neigt, wenn es um das Bestimmen von Wahrscheinlichkeiten geht, und ist Gegenstand einer lang anhaltenden öffentlichen Diskussion.Die Aufgabenstellung selbst geht auf den Biostatistiker Steve Selvin zurück, der sie als Leserbrief im American Statistician 1975 veröffentlichte. Weltweit bekannt und zum Gegenstand einer kontroversen Debatte wurde das Problem aber erst durch seine Publikation in Marilyn vos Savants „Ask-Marilyn“-Kolumne des Parade Magazines im Jahre 1990. Die dortige Version beruht auf einem Leserbrief, den vos Savant von Craig F. Whitaker aus Columbia, Maryland, erhalten hatte.Die Fragestellung in dieser Form ist unterbestimmt, die richtige Antwort hängt davon ab, welche Zusatzannahmen getroffen werden.Vos Savant gab die Antwort „Ja, Sie sollten wechseln. Das zuerst gewählte Tor hat die Gewinnchance von 1/3, aber das zweite Tor hat eine Gewinnchance von 2/3“. Vos Savants Antwort ist, obwohl unter Zusatzannahmen richtig, auch unter diesen Zusatzannahmen für viele Menschen sehr kontraintuitiv. In der Folge erreichten vos Savant zahlreiche Briefe, nach ihren Angaben Zehntausende, welche überwiegend die Richtigkeit ihrer Antwort bezweifelten.Das Ziegenproblem ist Gegenstand andauernder öffentlicher Debatten und wissenschaftlicher Untersuchungen.
  • Il problema di Monty Hall è un famoso problema di teoria della probabilità, legato al gioco a premi americano Let's Make a Deal. Prende il nome da quello del conduttore dello show, Maurice Halprin, noto con lo pseudonimo di Monty Hall.Nel gioco vengono mostrate al concorrente tre porte chiuse; dietro ad una si trova un'automobile, mentre ciascuna delle altre due nasconde una capra. Il giocatore può scegliere una delle tre porte, vincendo il premio corrispondente. Dopo che il giocatore ha selezionato una porta, ma non l'ha ancora aperta, il conduttore dello show – che conosce ciò che si trova dietro ogni porta – apre una delle altre due, rivelando una delle due capre, e offre al giocatore la possibilità di cambiare la propria scelta iniziale, passando all'unica porta restante.Cambiare porta migliora le chance del giocatore di vincere l'automobile? La risposta è sì: cambiando le probabilità di successo passano da 1/3 a 2/3.Il problema è anche noto come paradosso di Monty Hall, poiché la soluzione può apparire controintuitiva, ma non si tratta di una vera antinomia, in quanto non genera contraddizioni logiche.
  • Paradoks Monty'ego Halla – jeden z paradoksów opartych na rachunku prawdopodobieństwa. Nazwa paradoksu pochodzi od Monty'ego Halla, autora teleturnieju Let's make a deal (w polskiej wersji Idź na całość).
  • El problema de Monty Hall es un problema matemático de probabilidad basado en el concurso televisivo estadounidense Let's Make a Deal (Hagamos un trato). El problema fue bautizado con el nombre del presentador de dicho concurso: Monty Hall.
  • 몬티 홀 문제(Monty Hall problem)는 미국의 TV 게임 쇼 《Let's Make a Deal》에서 유래한 퍼즐이다. 퍼즐의 이름은 이 게임 쇼의 진행자 몬티 홀의 이름에서 따온 것이다. 퍼즐의 내용은 다음과 같다. 세 개의 문 중에 하나를 선택하여 문 뒤에 있는 선물을 가질 수 있는 게임쇼에 참가했다. 한 문 뒤에는 자동차가 있고, 나머지 두 문 뒤에는 염소가 있다. 이때 어떤 사람이 예를 들어 1번 문을 선택했을 때, 게임쇼 진행자는 3번 문을 열어 문뒤에 염소가 있음을 보여주면서 1번 대신 2번을 선택하겠냐고 물었다. 이때 원래 선택했던 번호를 바꾸는 것이 유리할까?이때 진행자는 자동차와 염소가 어떤 문에 있는지 알고 있기 때문에, 진행자가 자동차가 있는 문을 여는 일은 발생하지 않는다.
  • The Monty Hall problem is a brain teaser, in the form of a probability puzzle (Gruber, Krauss and others), loosely based on the American television game show Let's Make a Deal and named after its original host, Monty Hall. The problem was originally posed in a letter by Steve Selvin to the American Statistician in 1975 (Selvin 1975a), (Selvin 1975b). It became famous as a question from a reader's letter quoted in Marilyn vos Savant's "Ask Marilyn" column in Parade magazine in 1990 (vos Savant 1990a):Suppose you're on a game show, and you're given the choice of three doors: Behind one door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who knows what's behind the doors, opens another door, say No. 3, which has a goat. He then says to you, "Do you want to pick door No. 2?" Is it to your advantage to switch your choice?Vos Savant's response was that the contestant should switch to the other door. (vos Savant 1990a)The argument relies on assumptions, explicit in extended solution descriptions given by Selvin (1975b) and by vos Savant (1991a), that the host always opens a different door from the door chosen by the player and always reveals a goat by this action—because he knows where the car is hidden. Leonard Mlodinow stated: "The Monty Hall problem is hard to grasp, because unless you think about it carefully, the role of the host goes unappreciated." (Mlodinow 2008)Contestants who switch have a 2/3 chance of winning the car, while contestants who stick to their choice have only a 1/3 chance. One way to see this is to notice that 2/3 of the time, the initial choice of the player is a door hiding a goat. When that is the case, the host is forced to open the other goat door, and the remaining closed door hides the car. "Switching" only fails to give the car when the player picks the "right" door (the door hiding the car) to begin with, which only happens 1/3 of the time.Many readers of vos Savant's column refused to believe switching is beneficial despite her explanation. After the problem appeared in Parade, approximately 10,000 readers, including nearly 1,000 with PhDs, wrote to the magazine, most of them claiming vos Savant was wrong (Tierney 1991). Even when given explanations, simulations, and formal mathematical proofs, many people still do not accept that switching is the best strategy (vos Savant 1991a). Paul Erdős, one of the most prolific mathematicians in history, remained unconvinced until he was shown a computer simulation confirming the predicted result (Vazsonyi 1999).The Monty Hall problem has attracted academic interest from the surprising result and simple formulation. Variations of the Monty Hall problem are made by changing the implied assumptions and can create drastically different consequences. For one variation, if Monty only offers the contestant a chance to switch when the contestant initially chose the door hiding the car, then the contestant should never switch. For another variation, if Monty opens another door randomly and happens to reveal a goat, then it makes no difference (Rosenthal, 2005a), (Rosenthal, 2005b).The problem is a paradox of the veridical type, because the correct result (you should switch doors) is so counterintuitive it can seem absurd, but is nevertheless demonstrably true. The Monty Hall problem is mathematically closely related to the earlier Three Prisoners problem and to the much older Bertrand's box paradox.
  • Monty Hallův problém, také známý jako Monty Hallova úloha nebo problém tří dveří je pravděpodobnostní hádanka volně založená naamerické soutěžní show Let's Make a Deal. Jméno dostala podle moderátora soutěže Montyho Halla.Místo problém se někdy používá označení, Monty Hallův paradox, o paradox se přesto nejedná, pouze řešení hádanky je neintuitivní.
  • Парадокс Монти Холла — одна из известных задач теории вероятностей, решение которой, на первый взгляд, противоречит здравому смыслу.
  • El problema de Monty Hall és un trencaclosques de probabilitat basat en el programa de televisió americà Let's Make a Deal (Fem un tracte, en català). El nom ve del presentador del programa, Monty Hall. El problema també s'anomena la paradoxa de Monty Hall.Una explicació coneguda del problema va ser publicada a la revista Parade: Com que no hi ha manera de saber quina de les dues portes no obertes és la guanyadora, la majoria de la gent creu que cada porta té les mateixes probabilitats i conclou que canviar de porta no importa. Però aquesta conclusió és incorrecta: de fet si el jugador canvia la probabilitat de guanyar passa d'1/3 a 2/3. Canviar no dóna cap avantatge si el jugador tria inicialment la porta guanyadora, el que té una probabilitat d'1/3. Triar inicialment la porta incorrecta té una probabilitat de 2/3; quan es revela l'altra porta incorrecta, canviar suposa guanyar. Així, la probabilitat de guanyar quan es canvia de porta és de 2/3.Quan la solució del problema va aparèixer a la revista Parade, aproximadament 10.000 lectors, incloent uns 1.000 amb doctorat, van escriure a la revista dient que la resposta era incorrecta. Molta part de la controvèrsia fou perquè la versió de la revista del problema és tècnicament ambigua ja que hi ha aspectes que el presentador no explica, com que ha d'obrir una porta i ha d'oferir al concursant si vol canviar de porta.El problema estàndard de Monty Hall és matemàticament equivalent al problema dels tres presoners i els dos estan relacionats amb la paradoxa de la caixa de Bertrand.Aquest i d'altres problemes en els que intervenen distribucions de probabilitat no uniformes són força difícils de resoldre correctament, i porten a la realització de nombrosos estudis psicològics. Fins i tot quan es dóna una afirmació completament correcta del problema de Monty Hall, explicacions, simulacions i proves matemàtiques formals, molta gent pot encara dubtar de la solució correcta.
  • O problema de Monty Hall, também conhecido por paradoxo de Monty Hall é um problema matemático e paradoxo que surgiu a partir de um concurso televisivo dos Estados Unidos chamado Let’s Make a Deal, exibido na década de 1970. O jogo consiste no seguinte: Monty Hall (o apresentador) apresentava 3 portas aos concorrentes, sabendo que atrás de uma delas está um carro (prémio bom) e que as outras têm prêmios de pouco valor. Na 1ª etapa o concorrente escolhe uma porta (que ainda não é aberta); De seguida Monty abre uma das outras duas portas que o concorrente não escolheu, sabendo à partida que o carro não se encontra aí; Agora com duas portas apenas para escolher — pois uma delas já se viu, na 2ª etapa, que não tinha o prêmio — e sabendo que o carro está atrás de uma delas, o concorrente tem que se decidir se permanece com a porta que escolheu no início do jogo e abre-a ou se muda para a outra porta que ainda está fechada para então a abrir.Qual é a estratégia mais lógica? Ficar com a porta escolhida inicialmente ou mudar de porta? Com qual das duas portas ainda fechadas o concorrente tem mais probabilidades de ganhar? Por quê?Realmente não é assim tão indiferente mudar ou ficar na mesma porta.No início, quando se escolheu uma das portas, havia 1/3 de probabilidade de ganhar o carro. Não existe razão nenhuma para essa probabilidade mudar após o Monty Hall ter aberto uma das portas que não era premiada. As outras duas portas não escolhidas tinham em conjunto 2/3 de probabilidade de ocultarem o carro, e quando uma dessa portas é aberta (por não ter prêmio) a porta não escolhida que continua fechada passa a ter 2/3 de probabilidade de ser a porta do carro.A confusão é feita seguindo o raciocínio que parece mais lógico: "mas a porta escolhida também continua fechada... então cada uma das portas fechadas passa a ter 1/2 de chance de ter o carro".
  • モンティ・ホール問題(モンティ・ホールもんだい、Monty Hall problem)は確率論の問題で、ベイズの定理における事後確率、あるいは主観確率の例題のひとつとなっている。モンティ・ホール (Monty Hall、本名 Monte Halperin) が司会を務めるアメリカのゲームショー番組、「Let's make a deal」の中で行われたゲームに関する論争に由来する。一種の心理トリックになっており、確率論から導かれる結果を説明されても、なお納得しない者が少なくないことから、ジレンマあるいはパラドックスとも称される。「直感で正しいと思える解答と、論理的に正しい解答が異なる問題」の適例とされる。なお、モンティ・ホール問題と実質的に同型である3囚人問題については、かつて日本で精力的に研究された。
  • Monty Hall problemi, Amerikan TV yarışma programı Let's Make a Deal'a dayanan bir olasılık bulmacasıdır. Problem adını, yarışmanın sunucusu Monty Hall'dan alır. İçinde bir paradoksu da barındırması nedeniyle Monty Hall paradoksu olarak da anılan problemin sonucu saçma görünmekle birlikte, ispatlanabilir ve doğrudur.Problemin iyi bilinen bir açıklaması Parade dergisinde yayımlandı:Yarışmacı geriye kalan iki kapıdan hangisinin kazanan olduğundan emin olamadığı için, çoğu kişi bu kapıların eşit olasılığa sahip olduğunu ve seçimi değiştirmenin hiçbir şeyi değiştirmeyeceğini sanır. Aslında, problemin klasik açıklamasına göre yarışmacı seçimini değiştirmelidir. Zira böylece arabayı bulma olasılığını 1/3'ten 2/3'e çıkarır; yani ikiye katlar.Problemin yukarıdaki açıklaması ve çözümü Parade'de yer aldığı zaman, aralarında doktora derecesi olan 1.000 civarında kişinin de bulunduğu yaklaşık 10.000 okur, dergiye yazarak, çözümün yanlış olduğunu iddia etti. Bazı eleştirmenler problemin Parade versiyonunda sunucunun davranışının belli açılardan iyi şekilde açıklanmadığını; örneğin sunucunun bir kapıyı açıp böyle bir öneri yapıp yapamayacağının bilinmediğini belirtti. Öte yandan, bu gibi olası davranışların söz konusu tartışmayla bir ilgisi yoktur ya da probleme etkisi çok azdır (vos Savant 1990) ve bu davranış yazar tarafından açıkça belirtilmiştir (Seymann 1991). Problemin daha genel yorumları, örneğin bazı durumlarda sunucunun ardında araba olan kapıyı açabileceği, matematik eserlerinde tartışılmıştır.Monty Hall problemi, yaygın biçimlerinden biriyle, daha eski bir problem olan Üç Mahkum Problemine matematiksel olarak eşittir ve bunların ikisi birden daha da eski olan Bertrand'ın kutusu paradoksuyla benzerlikler gösterir. Bunlar ve olasılığın eşit olmayan şekilde dağıtımıyla ilgili diğer problemlerin doğru şekilde çözümünün zor olduğu yönünde bir inanış vardır ve bu durum problemlerin nasıl algılandığını ele alan psikolojik çalışmaların yapılmasına yol açmıştır. Monty Hall probleminin tamamıyla açık çözümüyle buna ilişkin açıklamalar, benzetme ve resmi matematiksel kanıtlar ortaya konulduğunda bile, çoğu kişi doğru yanıta şüpheyle bakmaktadır.
dbpedia-owl:thumbnail
dbpedia-owl:wikiPageExternalLink
dbpedia-owl:wikiPageID
  • 717727 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 45583 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 49 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 110202766 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • Le problème de Monty Hall est un casse-tête probabiliste librement inspiré du jeu télévisé américain Let's Make a Deal. Il est simple dans son énoncé mais non intuitif dans sa résolution et c'est pourquoi on parle parfois à son sujet de paradoxe de Monty Hall. Il porte le nom de celui qui a présenté ce jeu aux États-Unis pendant treize ans, Monty Hall.
  • Paradoks Monty'ego Halla – jeden z paradoksów opartych na rachunku prawdopodobieństwa. Nazwa paradoksu pochodzi od Monty'ego Halla, autora teleturnieju Let's make a deal (w polskiej wersji Idź na całość).
  • El problema de Monty Hall es un problema matemático de probabilidad basado en el concurso televisivo estadounidense Let's Make a Deal (Hagamos un trato). El problema fue bautizado con el nombre del presentador de dicho concurso: Monty Hall.
  • 몬티 홀 문제(Monty Hall problem)는 미국의 TV 게임 쇼 《Let's Make a Deal》에서 유래한 퍼즐이다. 퍼즐의 이름은 이 게임 쇼의 진행자 몬티 홀의 이름에서 따온 것이다. 퍼즐의 내용은 다음과 같다. 세 개의 문 중에 하나를 선택하여 문 뒤에 있는 선물을 가질 수 있는 게임쇼에 참가했다. 한 문 뒤에는 자동차가 있고, 나머지 두 문 뒤에는 염소가 있다. 이때 어떤 사람이 예를 들어 1번 문을 선택했을 때, 게임쇼 진행자는 3번 문을 열어 문뒤에 염소가 있음을 보여주면서 1번 대신 2번을 선택하겠냐고 물었다. 이때 원래 선택했던 번호를 바꾸는 것이 유리할까?이때 진행자는 자동차와 염소가 어떤 문에 있는지 알고 있기 때문에, 진행자가 자동차가 있는 문을 여는 일은 발생하지 않는다.
  • Monty Hallův problém, také známý jako Monty Hallova úloha nebo problém tří dveří je pravděpodobnostní hádanka volně založená naamerické soutěžní show Let's Make a Deal. Jméno dostala podle moderátora soutěže Montyho Halla.Místo problém se někdy používá označení, Monty Hallův paradox, o paradox se přesto nejedná, pouze řešení hádanky je neintuitivní.
  • Парадокс Монти Холла — одна из известных задач теории вероятностей, решение которой, на первый взгляд, противоречит здравому смыслу.
  • モンティ・ホール問題(モンティ・ホールもんだい、Monty Hall problem)は確率論の問題で、ベイズの定理における事後確率、あるいは主観確率の例題のひとつとなっている。モンティ・ホール (Monty Hall、本名 Monte Halperin) が司会を務めるアメリカのゲームショー番組、「Let's make a deal」の中で行われたゲームに関する論争に由来する。一種の心理トリックになっており、確率論から導かれる結果を説明されても、なお納得しない者が少なくないことから、ジレンマあるいはパラドックスとも称される。「直感で正しいと思える解答と、論理的に正しい解答が異なる問題」の適例とされる。なお、モンティ・ホール問題と実質的に同型である3囚人問題については、かつて日本で精力的に研究された。
  • El problema de Monty Hall és un trencaclosques de probabilitat basat en el programa de televisió americà Let's Make a Deal (Fem un tracte, en català). El nom ve del presentador del programa, Monty Hall.
  • De opmaak van dit artikel is nog niet in overeenstemming met de conventies van Wikipedia. Mogelijk is ook de spelling of het taalgebruik niet in orde. Men wordt uitgenodigd deze pagina aan te passen.Opgegeven reden: Verbindingen aanbrengen tussen tekstonderdelen en verantwoorde bronnen; ev. ook schrijfstijl ("we"?)Het driedeurenprobleem is een probleem uit de kansrekening en speltheorie dat vermoedelijk gebaseerd is op het eerder door Martin Gardner gepubliceerde probleem "De drie gevangenen".
  • A Monty Hall-paradoxon egy valószínűségi paradoxon, ami az Amerikai Egyesült Államokban futott Let's Make a Deal (Kössünk üzletet) című televíziós vetélkedő utolsó feladatán alapul, nevét a vetélkedő műsorvezetőjéről, Monty Hallról kapta. (A műsor magyar változtának címe Zsákbamacska volt, és Rózsa György vezette.)A műsor végén a játékosnak mutatnak három csukott ajtót, amelyek közül kettő mögött egy-egy kecske van, a harmadik mögött viszont egy vadonatúj autó.
  • Il problema di Monty Hall è un famoso problema di teoria della probabilità, legato al gioco a premi americano Let's Make a Deal. Prende il nome da quello del conduttore dello show, Maurice Halprin, noto con lo pseudonimo di Monty Hall.Nel gioco vengono mostrate al concorrente tre porte chiuse; dietro ad una si trova un'automobile, mentre ciascuna delle altre due nasconde una capra. Il giocatore può scegliere una delle tre porte, vincendo il premio corrispondente.
  • The Monty Hall problem is a brain teaser, in the form of a probability puzzle (Gruber, Krauss and others), loosely based on the American television game show Let's Make a Deal and named after its original host, Monty Hall. The problem was originally posed in a letter by Steve Selvin to the American Statistician in 1975 (Selvin 1975a), (Selvin 1975b).
  • Monty Hall problemi, Amerikan TV yarışma programı Let's Make a Deal'a dayanan bir olasılık bulmacasıdır. Problem adını, yarışmanın sunucusu Monty Hall'dan alır.
  • Masalah Monty Hall adalah sebuah teka-teki yang melibatkan probabilitas dan berasal dari sebuah acara permainan Amerika Let's Make a Deal. Nama masalah ini berasal dari nama pembawa acara tersebut, Monty Hall.
  • O problema de Monty Hall, também conhecido por paradoxo de Monty Hall é um problema matemático e paradoxo que surgiu a partir de um concurso televisivo dos Estados Unidos chamado Let’s Make a Deal, exibido na década de 1970. O jogo consiste no seguinte: Monty Hall (o apresentador) apresentava 3 portas aos concorrentes, sabendo que atrás de uma delas está um carro (prémio bom) e que as outras têm prêmios de pouco valor.
  • Das Ziegenproblem, Drei-Türen-Problem, Monty-Hall-Problem oder Monty-Hall-Dilemma ist eine Aufgabe mit Bezug zur Wahrscheinlichkeitstheorie. Die Aufgabenstellung ist lose der Spielshow Let’s Make a Deal nachempfunden, welche im deutschen Sprachraum in der Variante Geh aufs Ganze! bekannt wurde.
rdfs:label
  • Problème de Monty Hall
  • Driedeurenprobleem
  • Masalah Monty Hall
  • Monty Hall problem
  • Monty Hall problemi
  • Monty Hall-paradoxon
  • Monty Hallův problém
  • Paradoks Monty Halla
  • Problema de Monty Hall
  • Problema de Monty Hall
  • Problema de Monty Hall
  • Problema di Monty Hall
  • Ziegenproblem
  • Парадокс Монти Холла
  • モンティ・ホール問題
  • 몬티 홀 문제
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of