Le cycle du carbone est le cycle biogéochimique (ensemble des échanges d'un élément chimique) du carbone sur une planète.Celui de la Terre est rendu plus complexe par l'existence d'importantes masses d'eau océaniques, et surtout par le fait que la vie (et donc les composés carbonés qui en sont le substrat) y tient une place importante. Il existe quatre réservoirs de carbone : l'hydrosphère, la lithosphère, la biosphère et l'atmosphère.

PropertyValue
dbpedia-owl:abstract
  • Le cycle du carbone est le cycle biogéochimique (ensemble des échanges d'un élément chimique) du carbone sur une planète.Celui de la Terre est rendu plus complexe par l'existence d'importantes masses d'eau océaniques, et surtout par le fait que la vie (et donc les composés carbonés qui en sont le substrat) y tient une place importante. Il existe quatre réservoirs de carbone : l'hydrosphère, la lithosphère, la biosphère et l'atmosphère. La plus grande partie du carbone terrestre est piégée dans des composés qui participent peu au cycle : roches sous forme de carbonates et océan profond. L'essentiel du cycle se fait entre l'atmosphère, les couches superficielles du sol et des océans, et la biosphère (biomasse et nécromasse).En mer, le carbone se trouve surtout sous forme de carbonate et de biomasse planctonique. Sur les continents, les tourbières, prairies et forêts, mais aussi certains sols jouent un rôle plus ou moins important de stockage de carbone ou de puits de carbone.Les échanges de carbone s'expriment en milliards de tonnes (gigatonnes) par an (Gt/an).
  • Il ciclo del carbonio è il ciclo biogeochimico attraverso il quale il carbonio viene scambiato tra la geosfera (all'interno della quale si considerano i sedimenti e i combustibili fossili), l'idrosfera (mari e oceani), la biosfera (comprese le acque dolci) e l'atmosfera della Terra. Tutte queste porzioni della Terra sono considerabili a tutti gli effetti riserve di carbonio (carbon sinks). Il ciclo è infatti solitamente inteso come l'interscambio dinamico tra questi quattro distretti. Gli oceani contengono la maggior riserva di carbonio presente sulla Terra, sebbene essa sia solo in piccola parte disponibile all'interscambio con l'atmosfera.Le dinamiche di interscambio sono legate a processi chimici, fisici, geologici e biologici. Sembra che anche altri corpi celesti possano avere un ciclo del carbonio, ma esistono pochissime informazioni a tal riguardo.Il bilancio globale del carbonio è il bilancio degli scambi (entrate e perdite) tra le riserve di carbonio o tra uno specifico ciclo (ad es. atmosfera-biosfera) del ciclo del carbonio. Un esame del bilancio di carbonio di una riserva può fornire informazioni se questa stia funzionando da fonte o da consumatore del biossido di carbonio.
  • Геохимический цикл углерода — это комплекс процессов, в ходе которых происходит перенос углерода между различными геохимическими резервуарами. В истории Земли углеродный цикл менялся весьма значительно, эти изменения были как и медленные постепенные изменения, так и резкие катастрофические события. Важнейшую роль в круговороте углерода играли и играют живые организмы. В различных формах углерод присутствует во всех оболочках Земли.Геохимический цикл углерода имеет несколько важных особенностей: Разные процессы контролировали углеродный цикл на разных промежутках времени. Резкие, катастрофические изменения цикла углерода играли ключевую роль в эволюции углеродного цикла в истории Земли. Геохимический цикл углерода всегда происходит через атмосферу и гидросферу. Тем самым, даже самые глубинные процессы могут влиять на окружающую среду и биосферу.Геохимическая запись углеродного цикла изучена неравномерно по геологической шкале времён. Наиболее полно в этом отношении изучен четвертичный период, самый недавний и кратчайший геологический период, так как, с одной стороны, история углеродного цикла в нём наиболее полно зафиксирована ледниками Арктики и Антарктики. С другой стороны, в это время происходили значительные изменения углеродного цикла, и они неразрывно связаны с климатическими изменениями.При изучении изменений в геохимических циклах элементов необходимо учитывать временной масштаб явлений. Одни процессы могут привносить малозаметные изменения, которые на длительных геологических промежутках времени становятся решающими. Иные изменения могут носить катастрофический характер, и происходить за очень короткие времена. При этом понятие времени характеристики «долго» и «медленно» в этом контексте относительны. Примером, несомненно, мгновенного в геологической шкале времени события в геохимическом цикле углерода является позднепалеоценовый термальный максимум.
  • Obieg węgla w przyrodzie – biologiczne, chemiczne i fizyczne procesy zachodzące na Ziemi, w wyniku których następuje ciągły cykl wymiany węgla znajdującego się w atmosferze, w wodzie, organizmach żywych ich szczątkach oraz w skorupie ziemskiej.Węgiel w postaci dwutlenku węgla (CO2) jest asymilowany przez autotrofy (poprzez rośliny zielone w procesie fotosyntezy, a bakterie samożywne w procesie chemosyntezy) i włączany następnie w cząsteczki glukozy.Część glukozy zostaje z kolei zużyta do budowy komórek i tkanek, a część zużyta jako materiał energetyczny. Zwierzęta zjadając rośliny lub zwierzęta wykorzystują zawarty w związkach organicznych węgiel do budowy swojego ciała, a także w celach energetycznych.Podczas procesów energetycznych węgiel zawarty w związkach chemicznych jest utleniany i w postaci dwutlenku węgla w procesie oddychania jest wydalany do atmosfery lub wody.Źródła węgla w przyrodzie: atmosfera, przemysł, środki transportu, procesy rozkładu, oddychanie organizmów.Zawartość węgla w biosferze podlega wahaniom w skali milionów lat w wyniku dwóch cykli: cyklu węglanowo-krzemianowego cyklu organicznego↑
  • 炭素循環(たんそじゅんかん、英: carbon cycle)とは、地球上の生物圏、岩石圏、水圏、大気圏の間で行われる炭素の交換という生化学的な循環で、これらは炭素の保管庫(リザーバー)となっている。炭素循環は、一般にこの4つのリザーバー、具体的には大気、陸域生物圏(陸水系は普通ここに含まれる)、海洋、堆積物(化石燃料を含む)と、その間を相互に移動する経路で成り立っている。年間の炭素の移動は、リザーバー間で起こる様々な化学的、物理学的、地質学的、生物学的なプロセスを経て行われる。地球表層付近での最も大きな炭素の保管場所は海洋である。全球の炭素収支は炭素リザーバーの間、もしくは特定の循環(特に大気 - 海洋間)での炭素交換のバランス(吸収と放出)で示される。炭素収支を吟味することで、リザーバーが二酸化炭素の吸収源となっているのか発生源となっているのかを判断することができる。
  • 탄소의 순환(Carbon cycle)은 지구상의 생물권, 암권, 수권, 기권 사이에서 행해지는 탄소의 생화학적인 순환이다.탄소의 순환은 지구의 화학적 진화와 열적 진화에 매우 중요한 역할을 한다. 탄소는 암권에 압도적으로 많이 존재하지만, 암권에 존재하는 탄소보다는 기권에 존재하는 탄소가 훨씬 더 중요한 의미를 가진다. 특히 지구 기후 변동과 관련하여 기권을 중심으로 한 탄소의 공급과 제거는 매우 중요한 현대 과학의 화두이다.
  • El cicle del carboni és un cicle biogeoquímic en el qual intervenen els bescanvis de l'element carboni referits a qualsevol planeta. En el cas de la Terra aquest cicle és particularment complex pel fet d'haver diversos intercanvis entre els oceans, les roques, la matèria viva i l'Atmosfera. Hi ha quatre reservoris coneguts de carboni: la hidrosfera, la litosfera , la biosfera i l'Atmosfera terrestre.Els intercanvis de carboni s'expressen com milers de milions de tones, gigatones o també com Gt/any; les tres expressions signifiquen la mateixa quantitat.
  • Unter Kohlenstoffzyklus oder Kohlenstoffkreislauf versteht man das System der chemischen Umwandlungen kohlenstoffhaltiger Verbindungen in den globalen Systemen Lithosphäre, Hydrosphäre, Erdatmosphäre und Biosphäre sowie den Austausch dieser Verbindungen zwischen diesen Erdsphären.Die Kenntnis dieses Kreislaufs einschließlich seiner Teilprozesse ermöglicht es unter anderem, die Eingriffe des Menschen in das Klima und damit ihre Auswirkungen auf die globale Erwärmung abzuschätzen und angemessen zu reagieren.
  • The carbon cycle is the biogeochemical cycle by which carbon is exchanged among the biosphere, pedosphere, geosphere, hydrosphere, and atmosphere of the Earth. Along with the nitrogen cycle and the water cycle, the carbon cycle comprises a sequence of events that are key to making the Earth capable of sustaining life; it describes the movement of carbon as it is recycled and reused throughout the biosphere.The global carbon budget is the balance of the exchanges (incomes and losses) of carbon between the carbon reservoirs or between one specific loop (e.g., atmosphere ↔ biosphere) of the carbon cycle. An examination of the carbon budget of a pool or reservoir can provide information about whether the pool or reservoir is functioning as a source or sink for carbon dioxide.The carbon cycle was initially discovered by Joseph Priestley and Antoine Lavoisier, and popularized by Humphry Davy.
  • Karbonoaren zikloa elementu honek naturan jasaten duen eraldaketen multzoa da. Ziklo honetan karbonoa atmosferan, litosferan, hidrosferan eta izaki bizidunengan aurki daiteke, egoera hauetan: CO2 eta CH4 (atmosferan) ikatza eta petrolioa (litosferan) bikarbonato (HCO3-) eta karbonato-ioia (CO32-) (hidrosferan) gluzidoak, lipidoak, proteinak eta azido nukleikoak (izaki bizidunengan).Atmosferan karbonoaren kontzentrazioa txikia da (atmosferaren %0,03 besterik ez da CO2), azken urteotan berotegi-efektua dela eta zertxobait igo bada ere. Hidrosferan, aldiz, karbonoaren kopurua nabarmen handiagoa da, CO2 oso disolbagarria baita uretan.Karbonoaren zikloaren bitartez atmosferako karbonoa 20 urteetatik behin berritzen da (urtero atmosferako CO2-ren %5a kontsumitzen baita fotosintesiaren bidez).
  • Lihat siklus CNO untuk siklus karbon dalam astrofisika.Siklus karbon adalah siklus biogeokimia dimana karbon dipertukarkan antara biosfer, geosfer, hidrosfer, dan atmosfer Bumi (objek astronomis lainnya bisa jadi memiliki siklus karbon yang hampir sama meskipun hingga kini belum diketahui).Dalam siklus ini terdapat empat reservoir karbon utama yang dihubungkan oleh jalur pertukaran. Reservoir-reservoir tersebut adalah atmosfer, biosfer teresterial (biasanya termasuk pula freshwater system dan material non-hayati organik seperti karbon tanah (soil carbon)), lautan (termasuk karbon anorganik terlarut dan biota laut hayati dan non-hayati), dan sedimen (termasuk bahan bakar fosil). Pergerakan tahuan karbon, pertukaran karbon antar reservoir, terjadi karena proses-proses kimia, fisika, geologi, dan biologi yang bermaca-macam. Lautan mengadung kolam aktif karbon terbesar dekat permukaan Bumi, namun demikian laut dalam bagian dari kolam ini mengalami pertukaran yang lambat dengan atmosfer.Neraca karbon global adalah kesetimbangan pertukaran karbon (antara yang masuk dan keluar) antar reservoir karbon atau antara satu putaran (loop) spesifik siklus karbon (misalnya atmosfer - biosfer). Analisis neraca karbon dari sebuah kolam atau reservoir dapat memberikan informasi tentang apakah kolam atau reservoir berfungsi sebagai sumber (source) atau lubuk (sink) karbon dioksida.
  • De koolstofkringloop is de bekendste biogeochemische kringloop en beschrijft alle processen waarmee het element koolstof door het systeem Aarde circuleert. De koolstofkringloop beschrijft onder andere wat er gebeurt met door mensen uitgestoten koolstofdioxide in de atmosfeer. Omdat koolstofdioxide een belangrijk broeikasgas is, vormen de onduidelijkheden binnen de koolstofkringloop een belangrijk onderzoeksterrein binnen de biochemie, geochemie en klimatologie.Door de fotosynthese van planten wordt CO2 uit de lucht vastgelegd in planten in de vorm van koolhydraten. Een klein deel hiervan komt weer vrij door dissimilatie van de plant. (zie verder: Kortlopende organische kringloop).
  • O Carbono (C) é o quinto elemento mais abundante no Universo, depois do Hidrogênio (H), Hélio (He) e o Oxigênio (O), e é o pilar da vida como a conhecemos.Existem basicamente duas formas de carbono, uma orgânica, presente nos organismos vivos e mortos, não decompostos, e outra inorgânica, presente nas rochas.No planeta Terra o carbono circula através dos oceanos, da atmosfera, da terra e do seu interior, num grande ciclo biogeoquímico. Este ciclo pode ser dividido em dois tipos: o ciclo "lento" ou geológico, e o ciclo "rápido" ou biológico.
  • El ciclo del carbono son las transformaciones químicas de compuestos que contienen carbono en los intercambios entre biosfera, atmósfera, hidrosfera y litosfera. Es un ciclo de gran importancia para la supervivencia de los seres vivos en nuestro planeta, debido a que de él depende la producción de materia orgánica que es el alimento básico y fundamental de todo ser vivo.El carbono es un componente esencial para los vegetales y animales. Interviene en la fotosíntesis bajo la forma de CO2 (dióxido de carbono) o de H2CO3 (ácido carbónico), tal como se encuentran en la atmósfera. Forma parte de compuestos como: la glucosa, carbohidrato fundamental para la realización de procesos como la respiración y la alimentación de los seres vivos, y del cual se derivan sucesivamente la mayoría de los demás alimentos. La reserva fundamental de carbono, en moléculas de CO2 que los seres vivos puedan asimilar, es la atmósfera y la hidrosfera. Este gas está en la atmósfera en una concentración de más del 0,03% y cada año aproximadamente un 5% de estas reservas de CO2 se consumen en los procesos de fotosíntesis, es decir que todo el anhídrido carbónico se renueva en la atmósfera cada 21 años. La vuelta de CO2 a la atmósfera se hace cuando en la respiración, los seres vivos oxidan los alimentos produciendo CO2. En el conjunto de la biosfera la mayor parte de la respiración la hacen las raíces de las plantas y los organismos del suelo y no, como podría parecer, los animales más visibles. Los productos finales de la combustión son CO2 y vapor de agua. El equilibrio en la producción y consumo de cada uno de ellos por medio de la fotosíntesis hace posible la vida.Los vegetales verdes que contienen clorofila toman el CO2 del aire y durante la fotosíntesis liberan oxígeno, además producen el material nutritivo indispensable para los seres vivos. Como todas las plantas verdes de la tierra ejecutan ese mismo proceso diariamente, no es posible siquiera imaginar la cantidad de CO2 empleada en la fotosíntesis.En la medida de que el CO2 es consumido por las plantas, también es remplazado por medio de la respiración de los seres vivos, por la descomposición de la materia orgánica y como producto final de combustión del petróleo, hulla, gasolina, etc.En el ciclo del carbono participan los seres vivos y muchos fenómenos naturales como los incendios. Los seres vivos acuáticos toman el CO2 del agua. La solubilidad de este gas en el agua es muy superior a la que tiene en el aire.
  • Koloběh uhlíku je biogeochemický cyklus, při němž se uhlík vyměňuje mezi biosférou, litosférou, hydrosférou a atmosférou.
  • Karbon döngüsü, ekosistemdeki canlıların yapısını oluşturan en önemli elementlerden biri karbondur. Karbon, canlılardaki bütün organik bileşiklerin yapısında bulunur. Yeryüzündeki önemli depoları ise; Atmosferde CO2 Sularda CO2 ve HCO3- Karada genellikle kömür, petrol ve kireçtaşının yapısındadır.Havadaki CO2 bitkiler tarafından fotosentezde kullanılarak O2ve organik bileşiklere dönüşür. Organik besinin yapısına katılan CO2 yapısındaki karbon bütün canlılar tarafından enerji ve yapı hammaddesi olarak kullanılır. Solunum olayında tekrar CO2 olarak atmosfere döner. Karbonun bir kısmı ise mineral olarak yer katmanında birikir ya da ölü bitki ve hayvanların organik atıkları halinde toprağa geçer. Burada saprofit canlılar tarafından ayrıştırılır veya kömür, petrol gibi fosil yakıtların kullanımı ile tekrar atmosfere geçer. Ancak fosil yakıtların aşırı kullanımı atmosferde aşırı CO2 sera etkisi meydana getireceğinden dünyada iklimin değişmesi, sıcaklığın birkaç derece artışı ve bunun sonucunda kutuplardaki buzulların erime tehlikesini doğurmaktadır.Bu döngüde, karbon değişik sürelerle üç depolama havuzundan geçer. En kısa depolama ömrü biyolojik kısımdadır. Bitkiler, atmosfer ve okyanus sularının her biri hemen hemen eşit miktarda (takriben 500 ila 700 milyar ton arası) karbon ihtiva eder. Hayvanlar ve insanlar ise çok daha az (1 ila 2 milyar ton) karbona ev sahipliği yapar. Günler, yıllar hatta asırlar boyunca organizmaların büyüme, ölme ve çürümesi neticesinde karbon bu havuzlar arasında gider gelir. Değişik zamanlarda bu havuzlar net karbon transferine göre alıcı veya verici durumunda olabilir. Ancak bütün hadiseye baktığımızda karbon devrinin dinamik dengede olduğu söylenebilir.Karbonun çok daha uzun süre depolandığı, karbon devri-daiminin jeokimyevi kısmı iki önemli havuzdan meydana gelir:Derin okyanus suları (tahmini 36.000 milyar ton) ve kayalar (özellikle kireçtaşı, tahmini 75x10 milyon ton). Bu havuzlardan karbon devri-daiminin diğer kısımlarına çok yavaş bir şekilde karbon salınır. Biyolojik devre karbon tahliyesi, derin okyanus akıntıları, volkanik faaliyetler, kayaların erozyonu ve petrol, kömür, tabii gaz gibi fosil yakıtların kullanılması vasıtası ile, genellikle atmosfer kanalıyla yapılır.Bu devir sırasında biyolojik ve jeokimyevi karbon arasında geçiş noktası topraktaki karbondur. Dünya yüzünde toprakta 1500 milyor ton kadar karbon bulunur. Toprak karbonu oldukça kararlıdır ve diğer havuzlarla kolay değişime girmez.Global karbon devri bitkilerle yürütülür. Bu yolla yakalanan karbon, bitkilerin büyümesini sağlarken hayvanların bu bitkileri yemesiyle gıda zincirine katılır. Fotosentezle kara, okyanus ve akarsulardakinden iki kat fazla karbondioksit alınır. Kara bitkileri çoğunluğu ağaçlarda olmak üzere, su bitkilerinden 250 kat daha fazla karbon ihtiva eder.1990'larda denizlerdeki çözünmüş halde inorganik karbon konsantrasyonlarıKarada karbondioksit bitki ve hayvanlar tarafından tutulurken, okyanuslarda bu vazifenin çok az bir kısmı canlı organizmalara verilmiştir. Bazılarının karbondioksit ve bikarbonatı çözmelerinin yanında bu karbonun birçoğu da bu yaratıklardan arta kalan birikintilerde bulunur. Plankton (bitki ve hayvan), mercan ve diğer canlılar, kalsit mineraller, kalsiyum karbonattan meydana gelen kabuk ve iskeletlere sahiptir. Hayat vazifesinden terhis neticesinde bu kabuk ve iskeletler, birer karbon kaynağı olarak deniz diplerinde tebeşir veya kireçtaşı halinde birikir. Böylece milyonlarca yıldır denizden karbon çekilmektedir.Diğer kayalar da hususen fosil yakıtların kaynağı olanlar, karbonu saklar. Bu karbon da canlı organizma menşeilidir. Bitkiler kömür için karbon kaynağı olurken, petrol ve doğalgaz çoğunlukla deniz canlılarından meydana gelir. Kayaların iklim şartlan ve topraktaki organik asitler vasıtasıyla parçalanması sonucu karbonatlardan ve volkan faaliyetlerinden atmosfere karbon bırakılır.Buraya kadarki kısım sistemin tabii işleyişidir. Oysa sanayi devriminden bu yana, insanoğlu atmosfere sürekli karbon ekleyerek bu muazzam dengenin bozulmasına iki yolla sebep olmaktadır:Birincisi, fosil yakıtların yakılması; ikincisi de toprakların kullanılmasındaki değişiklik, yani ormanların yokedilmesi. Gelişmiş ve gelişmekte olan memleketlerin enerji ihtiyacındaki artış bunun en büyük nedeni olmuştur.Fosil yakıtların kullanılmasıyla milyonlarca yıldır kayaların içinde saklı bulunan karbonun havaya karışması hızlandırılmaktadır. Ormanların yakılmasıyla ise CO2 tabii seyrinden daha hızlı bir şekilde atmosfere karışmaktadır.Günümüzde bilim insanları ve siyasiler atmosferde fazlaca bulunan CO2'nin sebep olduğu "sera tesiri" adı verilen hadiseyle yakından ilgilenmekteler. Çünkü sera tesiri ile dünyanın ikliminin büyük ölçüde değişeceğinden endişe edilmektedir.Karbon devri-daiminde fonksiyon icra eden tek gaz CO2 değildir. Atmosferde çok az bulunmasına rağmen CO2'den daha hızlı artan her bir metan molekülü (CH4) 30 CO2 molekülünün yaptığı sera etkisine sebep olmaktadır. Metanın kaynağını ziraat (pirinç), boru hatlarındaki sızıntılar, maden ocakları, plastikler ve bakteriler teşkil eder.Kömür, petrol ve gaz tüketimi hakkında tutulan kayıtlar, yılda 5 milyar ton karbonun dumanla birlikte atmosfere salındığını göstermektedir. Fakat bitki ve okyanusların atmosferden aldığı karbon, bu artış hızını yarıya indirir. Dünyadaki ekosistemlerin karbon devrine yaptığı tesirleri de bilmemiz gerekir. Bilim insanları tarla açmak için yakılan ormanlarda kaybolan karbonun sırrını henüz çözememişlerdir. Yakılan bir bitkinin içindeki karbon oksitlenerek karbondioksit şeklinde atmosfere karışır. Bu durum topraktaki organik maddelerde bulunan karbonlar için de geçerlidir. Yanmış arazilerde tekrar bitki yetiştirilirse mekanizma tersine işler. Yani havadaki karbondioksit alınır ve havaya oksijen verilir. Karbon ise toprakta kalır.Bitki örtüsünün yakılması karbon devrine menfi yönde tesir eder. Hasattan sonra anızların yakılması, atmosferdeki karbondioksit miktarını arttırdığı gibi, toprakta organik madde birikimini engellemekte ve yararlı mikroorganizmaların ölmesine sebep olmaktadır. Birçok gelişmiş ülkede yakıt olarak odun ve zirai atıklar kullanılmaktadır. Ormanlar ve çayırlar, tarım alanı açmak için yakılmaktadır. Her 1 kilowatt-saat elektrik (termik santrallerde) 1 kg, her litre benzin 2,5 kg. karbondioksit ortaya çıkarmaktadır. Şayet biz yeryüzündeki bitki örtülerini mevcut hızla yakmaya devam edersek 2100 yılına kadar atmosferdeki karbondioksit oranı şimdikinin üç katı olacaktır.Yaklaşık olarak 340 milyon yıl önce, bugünkü İngiltere adalarını içine alan bölgelerin yavaş yavaş suyla kaplandığı büyük bir deniz basması başladı. Bu olay Devonyenden Karbon devrine (Karbonifer) geçişi vurgular. Aşağı yukarı 100 milyon yıl süren Karbon devri boyunca kıtalar, hiçbir zaman çağımızdaki kadar çok bitkiyle kaplanmadılar.Silüryen devrinde, bazı bitki türleri su yaşamından kara yaşamına geçmeye başladılar. Daha sonraki Devonyen devrinde ise korular ortaya çıktı. Karbon devrinde korular gerçek ormanlar haline geldi. Bitkilerin, Karbon devrinde zamanla kömüre dönüşen son derece büyük miktarlarda karbon kalıntıları bırakacak kadar çoğalmalarının nedenini açıklamak olanaksızdır. Kuşkusuz, yeryüzü kabuğundaki tüm kömürler Karbon devrinde oluşmamıştır; ama büyük bir bölümü, o devirden kalmadır. Bu yüzden, bilim insanları, Karbon devrinde atmosferin, bitki metabolizması için gerekli bir madde olan karbondioksit açısından zengin olduğunu düşünmektedirler; bununla birlikte, bitki dünyasındaki söz konusu dev patlamanın nedeninin bu olduğunu kanıtlamak olanaksızdır.Karbon devri çok uzun bir süreyi kapsadığı için, bu devirde deniz düzeyindeki değişikliklerin tarihi oldukça karmaşıktır. Dünyanın sonradan yeniden yükselecek birçok bölgesi tümüyle su altındaydı; bazı bölgeleri birçok kez su basmıştı. Ayrıca, karmaşık dağoluş değişiklikleri de bu devirde oldu ve bu değişikliklere, magma ve yanardağ hareketleri eşlik etti.İklimin bugünkünden farklı olduğu gerçeği şaşırtıcı değildir; ama, Gondwana kıtasında (sonradan güney Afrika, güney Asya, Güney Amerika ve Avustralya diye adlandırılan bölgeler) geniş alanlara yayılan buzullaşmanın başlaması, ilgi çekici bir durumdur. Öte yandan, Spitsbergen adaları gibi günümüzde buzul ikliminin görüldüğü bölgelerde, iklim ılımandı. İklimin ılımanlığı, kömür oluşumunu kolaylaştırıyordu.Karbon devri, adını bu devirde oluşan bol kömür tortullarından alır. Kömür, tortullar halinde Karbon devrinden önce de, sonra da vardı; hattâ günümüzde bile oluşmaktadır, ama görünüşe bakılırsa, Karbon devrine özelliğini veren hızlı oluşum, bir daha hiç tekrarlanmamıştır.Kömür tortulları Karbon devrinde oluşmuş tüm kayalarda bulunmazsa da, bazı özel bölgelerde (Çin gibi). Karbon devri kayalarının tümünde kömür tortullarına rastlanır. Bununla birlikte, Kuzey Amerika’nın batısında yer alan dağlık bölgedeki yaygın Karbon devri yapıları, kömür kapsamaz. Karbon devri yapılarından elde edilen kömür ne çok eski, ne de çok yeni olduğu için, bulunabilecek en iyi kömürdür. Yeni kömürün guncelhbr.com ısıtma gücü düşüktür; bunun yanı sıra, eski kömür yarı yarıya hiç de yanıcı olmayan grafite dönüşmüş olabilir.Balıkların denizlerde çoğaldığı Devonyen devrinde, ikiyaşayışlılar ortaya çıktılar. Tamamlanmamış bir başkalaşma olayı yaşayan ilk böceklerin ortaya çıkışı, Karbon devrinin başlangıcıyla çakışır. Çeşitli bitki yapılarının yaşamlarını sürdürdüğü yeryüzünün değişik köşelerinde, ormanlar oluşuyordu. Karbon devrinin ortalarına doğru, yaşam çizgileri bugüne varan kozalaklılar ortaya çıktı.İlk ormanların hemen tümü, bataklık bölgelerde gelişti. Bu yüzden, Karbon devri bitkilerinin gelişiminde su, çok önemli bir öğe olma özelliğini koruyordu. Ayrıca su, bu dönemi simgeleyen kömür oluşumunda belirleyici bir etken sayılabilir.Yeşil bitkilerin, güneşten gelen ışık ve doğadan absorbe ettikleri karbondioksit ve su molekülleri ile organik maddeleri sentezlediğini biliyoruz.Bitki ve hayvanların sentezlediği organik maddeler arasında ise karbonhidratlar önemli yer tutar.Karbonhidratlar ve türevleri, saprofit bakteriler tarafından absorbe edilerek solunumda kullanılır ve solunum son ürünü olarak atmosfere serbest karbondioksiti bırakırlar. Karbonhidrat içeren bitkiler aynı zamanda hayvanlar tarafından besin olarak tüketilirler.Gerek hayvanların gerekse mikroorganizmaların ölümleri sonucunda, toprakta ayrışmaya başlayan vücut yapıları, metan bakterileri tarafından ayrıştırılarak CO2 ‘ ye dönüştürülür ve atmosfere serbest olarak bırakılır.Şemada görüldüğü gibi CO2, ışık ve su varlığında tekrar bitkiler tarafından fotosentez reaksiyonlarında kullanılır.Bunun dışında bitki ve hayvan ölüleri, toprağın çok derinlerinde, yüksek basıç ve sıcaklık etkisi altında petrol ve kömür gibi yapılara dönüşebilirler.Petrol ve kömür, insanlar tarafından enerji ihtiyaçları için kullanılırken yine açığa karbondioksit (CO2) ve karbonmonoksit (CO) gazları çıkar.Karbon elementi, doğadaki döngüsünü bu şekilde tamamlamış olur.
dbpedia-owl:thumbnail
dbpedia-owl:wikiPageExternalLink
dbpedia-owl:wikiPageID
  • 37895 (xsd:integer)
dbpedia-owl:wikiPageLength
  • 21224 (xsd:integer)
dbpedia-owl:wikiPageOutDegree
  • 142 (xsd:integer)
dbpedia-owl:wikiPageRevisionID
  • 110657479 (xsd:integer)
dbpedia-owl:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • Le cycle du carbone est le cycle biogéochimique (ensemble des échanges d'un élément chimique) du carbone sur une planète.Celui de la Terre est rendu plus complexe par l'existence d'importantes masses d'eau océaniques, et surtout par le fait que la vie (et donc les composés carbonés qui en sont le substrat) y tient une place importante. Il existe quatre réservoirs de carbone : l'hydrosphère, la lithosphère, la biosphère et l'atmosphère.
  • 炭素循環(たんそじゅんかん、英: carbon cycle)とは、地球上の生物圏、岩石圏、水圏、大気圏の間で行われる炭素の交換という生化学的な循環で、これらは炭素の保管庫(リザーバー)となっている。炭素循環は、一般にこの4つのリザーバー、具体的には大気、陸域生物圏(陸水系は普通ここに含まれる)、海洋、堆積物(化石燃料を含む)と、その間を相互に移動する経路で成り立っている。年間の炭素の移動は、リザーバー間で起こる様々な化学的、物理学的、地質学的、生物学的なプロセスを経て行われる。地球表層付近での最も大きな炭素の保管場所は海洋である。全球の炭素収支は炭素リザーバーの間、もしくは特定の循環(特に大気 - 海洋間)での炭素交換のバランス(吸収と放出)で示される。炭素収支を吟味することで、リザーバーが二酸化炭素の吸収源となっているのか発生源となっているのかを判断することができる。
  • 탄소의 순환(Carbon cycle)은 지구상의 생물권, 암권, 수권, 기권 사이에서 행해지는 탄소의 생화학적인 순환이다.탄소의 순환은 지구의 화학적 진화와 열적 진화에 매우 중요한 역할을 한다. 탄소는 암권에 압도적으로 많이 존재하지만, 암권에 존재하는 탄소보다는 기권에 존재하는 탄소가 훨씬 더 중요한 의미를 가진다. 특히 지구 기후 변동과 관련하여 기권을 중심으로 한 탄소의 공급과 제거는 매우 중요한 현대 과학의 화두이다.
  • Unter Kohlenstoffzyklus oder Kohlenstoffkreislauf versteht man das System der chemischen Umwandlungen kohlenstoffhaltiger Verbindungen in den globalen Systemen Lithosphäre, Hydrosphäre, Erdatmosphäre und Biosphäre sowie den Austausch dieser Verbindungen zwischen diesen Erdsphären.Die Kenntnis dieses Kreislaufs einschließlich seiner Teilprozesse ermöglicht es unter anderem, die Eingriffe des Menschen in das Klima und damit ihre Auswirkungen auf die globale Erwärmung abzuschätzen und angemessen zu reagieren.
  • Koloběh uhlíku je biogeochemický cyklus, při němž se uhlík vyměňuje mezi biosférou, litosférou, hydrosférou a atmosférou.
  • Karbonoaren zikloa elementu honek naturan jasaten duen eraldaketen multzoa da.
  • The carbon cycle is the biogeochemical cycle by which carbon is exchanged among the biosphere, pedosphere, geosphere, hydrosphere, and atmosphere of the Earth.
  • De koolstofkringloop is de bekendste biogeochemische kringloop en beschrijft alle processen waarmee het element koolstof door het systeem Aarde circuleert. De koolstofkringloop beschrijft onder andere wat er gebeurt met door mensen uitgestoten koolstofdioxide in de atmosfeer.
  • Lihat siklus CNO untuk siklus karbon dalam astrofisika.Siklus karbon adalah siklus biogeokimia dimana karbon dipertukarkan antara biosfer, geosfer, hidrosfer, dan atmosfer Bumi (objek astronomis lainnya bisa jadi memiliki siklus karbon yang hampir sama meskipun hingga kini belum diketahui).Dalam siklus ini terdapat empat reservoir karbon utama yang dihubungkan oleh jalur pertukaran.
  • Il ciclo del carbonio è il ciclo biogeochimico attraverso il quale il carbonio viene scambiato tra la geosfera (all'interno della quale si considerano i sedimenti e i combustibili fossili), l'idrosfera (mari e oceani), la biosfera (comprese le acque dolci) e l'atmosfera della Terra. Tutte queste porzioni della Terra sono considerabili a tutti gli effetti riserve di carbonio (carbon sinks). Il ciclo è infatti solitamente inteso come l'interscambio dinamico tra questi quattro distretti.
  • El ciclo del carbono son las transformaciones químicas de compuestos que contienen carbono en los intercambios entre biosfera, atmósfera, hidrosfera y litosfera. Es un ciclo de gran importancia para la supervivencia de los seres vivos en nuestro planeta, debido a que de él depende la producción de materia orgánica que es el alimento básico y fundamental de todo ser vivo.El carbono es un componente esencial para los vegetales y animales.
  • Геохимический цикл углерода — это комплекс процессов, в ходе которых происходит перенос углерода между различными геохимическими резервуарами. В истории Земли углеродный цикл менялся весьма значительно, эти изменения были как и медленные постепенные изменения, так и резкие катастрофические события. Важнейшую роль в круговороте углерода играли и играют живые организмы.
  • Karbon döngüsü, ekosistemdeki canlıların yapısını oluşturan en önemli elementlerden biri karbondur. Karbon, canlılardaki bütün organik bileşiklerin yapısında bulunur. Yeryüzündeki önemli depoları ise; Atmosferde CO2 Sularda CO2 ve HCO3- Karada genellikle kömür, petrol ve kireçtaşının yapısındadır.Havadaki CO2 bitkiler tarafından fotosentezde kullanılarak O2ve organik bileşiklere dönüşür.
  • O Carbono (C) é o quinto elemento mais abundante no Universo, depois do Hidrogênio (H), Hélio (He) e o Oxigênio (O), e é o pilar da vida como a conhecemos.Existem basicamente duas formas de carbono, uma orgânica, presente nos organismos vivos e mortos, não decompostos, e outra inorgânica, presente nas rochas.No planeta Terra o carbono circula através dos oceanos, da atmosfera, da terra e do seu interior, num grande ciclo biogeoquímico.
  • Obieg węgla w przyrodzie – biologiczne, chemiczne i fizyczne procesy zachodzące na Ziemi, w wyniku których następuje ciągły cykl wymiany węgla znajdującego się w atmosferze, w wodzie, organizmach żywych ich szczątkach oraz w skorupie ziemskiej.Węgiel w postaci dwutlenku węgla (CO2) jest asymilowany przez autotrofy (poprzez rośliny zielone w procesie fotosyntezy, a bakterie samożywne w procesie chemosyntezy) i włączany następnie w cząsteczki glukozy.Część glukozy zostaje z kolei zużyta do budowy komórek i tkanek, a część zużyta jako materiał energetyczny.
  • Биогеохимичният кръговрат на въглерода се очертава като най-интензивният между всички биогеохимични цикли. Въглеродът циркулира с висока скорост както между различните неорганични (абиотични) среди, така и посредством хранителните мрежи, създадени вътре в съобществата от живи организми.Въглеродът като биогенен елемент е с първостепенно значение. Съществуването му в природата се свежда главно до две минерални проявления.
  • El cicle del carboni és un cicle biogeoquímic en el qual intervenen els bescanvis de l'element carboni referits a qualsevol planeta. En el cas de la Terra aquest cicle és particularment complex pel fet d'haver diversos intercanvis entre els oceans, les roques, la matèria viva i l'Atmosfera.
rdfs:label
  • Cycle du carbone
  • Геохимический цикл углерода
  • Carbon cycle
  • Cicle del carboni
  • Ciclo del carbonio
  • Ciclo del carbono
  • Ciclo do carbono
  • Karbon döngüsü
  • Karbonoaren zikloa
  • Kohlenstoffzyklus
  • Koloběh uhlíku
  • Koolstofkringloop
  • Obieg węgla w przyrodzie
  • Siklus karbon
  • Кръговрат на въглерода
  • 炭素循環
  • 탄소의 순환
owl:sameAs
http://www.w3.org/ns/prov#wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbpedia-owl:wikiPageDisambiguates of
is dbpedia-owl:wikiPageRedirects of
is dbpedia-owl:wikiPageWikiLink of
is foaf:primaryTopic of