rdfs:comment
| - En mathématiques, plus précisément en théorie des ensembles, on dit qu'un ensemble E a la puissance du continu (ou parfois le cardinal du continu) s'il est équipotent à l'ensemble ℝ des nombres réels, c'est-à-dire s'il existe une bijection de E dans ℝ. Le cardinal de ℝ est parfois noté , en référence au (en), nom donné à l'ensemble ordonné (ℝ, ≤). Cet ordre (et a fortiori le cardinal de l'ensemble sous-jacent) est entièrement déterminé (à isomorphisme près) par quelques propriétés classiques. (fr)
|
has abstract
| - En mathématiques, plus précisément en théorie des ensembles, on dit qu'un ensemble E a la puissance du continu (ou parfois le cardinal du continu) s'il est équipotent à l'ensemble ℝ des nombres réels, c'est-à-dire s'il existe une bijection de E dans ℝ. Le cardinal de ℝ est parfois noté , en référence au (en), nom donné à l'ensemble ordonné (ℝ, ≤). Cet ordre (et a fortiori le cardinal de l'ensemble sous-jacent) est entièrement déterminé (à isomorphisme près) par quelques propriétés classiques. Il est aussi couramment noté 2ℵ₀, parce que ℝ est équipotent à l'ensemble P(ℕ) des parties de l'ensemble ℕ des entiers naturels, dont la cardinalité (le dénombrable) est notée ℵ₀, et que pour tout ensemble E, le cardinal de est , où désigne le cardinal de E. (fr)
|