Property |
Value |
dbo:abstract
|
- Une topologie étale est l'exemple le plus important d'une topologie de Grothendieck sur les schémas. Généralisant la topologie euclidienne, elle est définie en caractéristique positive et permet d'introduire une théorie cohomologique sur ces objets : la cohomologie étale. Une catégorie munie d'une telle topologie forme alors un site appelé site étale, et il existe une théorie des faisceaux étales, qui donne le premier exemplaire historique d'un topos : le topos étale. (fr)
- Une topologie étale est l'exemple le plus important d'une topologie de Grothendieck sur les schémas. Généralisant la topologie euclidienne, elle est définie en caractéristique positive et permet d'introduire une théorie cohomologique sur ces objets : la cohomologie étale. Une catégorie munie d'une telle topologie forme alors un site appelé site étale, et il existe une théorie des faisceaux étales, qui donne le premier exemplaire historique d'un topos : le topos étale. (fr)
|
dbo:discoverer
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 2138 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-fr:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- Une topologie étale est l'exemple le plus important d'une topologie de Grothendieck sur les schémas. Généralisant la topologie euclidienne, elle est définie en caractéristique positive et permet d'introduire une théorie cohomologique sur ces objets : la cohomologie étale. Une catégorie munie d'une telle topologie forme alors un site appelé site étale, et il existe une théorie des faisceaux étales, qui donne le premier exemplaire historique d'un topos : le topos étale. (fr)
- Une topologie étale est l'exemple le plus important d'une topologie de Grothendieck sur les schémas. Généralisant la topologie euclidienne, elle est définie en caractéristique positive et permet d'introduire une théorie cohomologique sur ces objets : la cohomologie étale. Une catégorie munie d'une telle topologie forme alors un site appelé site étale, et il existe une théorie des faisceaux étales, qui donne le premier exemplaire historique d'un topos : le topos étale. (fr)
|
rdfs:label
|
- Topologie étale (fr)
- Étale topology (en)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is oa:hasTarget
of | |
is foaf:primaryTopic
of | |