En analyse complexe, le théorème de Mittag-Leffler montre l'existence de fonctions méromorphes avec des pôles prescrits. Il se rapproche en cela du théorème de factorisation de Weierstrass, qui affirme l'existence de fonctions holomorphes avec des zéros prescrits. Il doit son nom au mathématicien suédois Gösta Mittag-Leffler.

Property Value
dbo:abstract
  • En analyse complexe, le théorème de Mittag-Leffler montre l'existence de fonctions méromorphes avec des pôles prescrits. Il se rapproche en cela du théorème de factorisation de Weierstrass, qui affirme l'existence de fonctions holomorphes avec des zéros prescrits. Il doit son nom au mathématicien suédois Gösta Mittag-Leffler. (fr)
  • En analyse complexe, le théorème de Mittag-Leffler montre l'existence de fonctions méromorphes avec des pôles prescrits. Il se rapproche en cela du théorème de factorisation de Weierstrass, qui affirme l'existence de fonctions holomorphes avec des zéros prescrits. Il doit son nom au mathématicien suédois Gösta Mittag-Leffler. (fr)
dbo:namedAfter
dbo:wikiPageID
  • 6776918 (xsd:integer)
dbo:wikiPageLength
  • 2434 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 157538930 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • En analyse complexe, le théorème de Mittag-Leffler montre l'existence de fonctions méromorphes avec des pôles prescrits. Il se rapproche en cela du théorème de factorisation de Weierstrass, qui affirme l'existence de fonctions holomorphes avec des zéros prescrits. Il doit son nom au mathématicien suédois Gösta Mittag-Leffler. (fr)
  • En analyse complexe, le théorème de Mittag-Leffler montre l'existence de fonctions méromorphes avec des pôles prescrits. Il se rapproche en cela du théorème de factorisation de Weierstrass, qui affirme l'existence de fonctions holomorphes avec des zéros prescrits. Il doit son nom au mathématicien suédois Gösta Mittag-Leffler. (fr)
rdfs:label
  • Mittag-Leffler's theorem (en)
  • Satz von Mittag-Leffler (de)
  • Stelling van Mittag-Leffler (nl)
  • Théorème de Mittag-Leffler (fr)
  • Теорема Міттаг-Лефлера (uk)
  • ミッタク=レフラーの定理 (ja)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of