Le théorème de Chasles est un théorème de géodésie physique. Considérons une fonction harmonique à l'extérieur d'une surface . Admettons en outre que soit une surface équipotentielle. Ainsi, sur cette surface on a , la quantité étant une constante arbitraire. Pour un point extérieur à , la représentation intégrale d'une fonction harmonique permet d'écrire , désignant la distance de à un point quelconque de . Or, d'après la formule de Gauss-Bonnet pour un point extérieur, la deuxième intégrale du membre de droite s'annule, de sorte qu'on a .

Property Value
dbo:abstract
  • Le théorème de Chasles est un théorème de géodésie physique. Considérons une fonction harmonique à l'extérieur d'une surface . Admettons en outre que soit une surface équipotentielle. Ainsi, sur cette surface on a , la quantité étant une constante arbitraire. Pour un point extérieur à , la représentation intégrale d'une fonction harmonique permet d'écrire , désignant la distance de à un point quelconque de . Or, d'après la formule de Gauss-Bonnet pour un point extérieur, la deuxième intégrale du membre de droite s'annule, de sorte qu'on a . Cette formule est due à Michel Chasles (1793-1880). Elle montre que toute fonction harmonique peut se représenter par un potentiel de simple couche sur l'une quelconque de ses surfaces équipotentielles const. Dans le cas particulier où il s'agit d'un potentiel newtonien d'un corps solide situé à l'intérieur de , le théorème de Chasles indique qu'il est toujours possible de remplacer le corps solide par une simple couche de densité surfacique adéquate épousant l'une de ses surfaces équipotentielles extérieures sans changer le potentiel à l'extérieur de celle-ci. Ce théorème est à rapprocher du théorème d'unicité de Stokes. * Portail de la géodésie et de la géophysique * Portail de la physique * Portail des mathématiques * Portail de l’astronomie (fr)
  • Le théorème de Chasles est un théorème de géodésie physique. Considérons une fonction harmonique à l'extérieur d'une surface . Admettons en outre que soit une surface équipotentielle. Ainsi, sur cette surface on a , la quantité étant une constante arbitraire. Pour un point extérieur à , la représentation intégrale d'une fonction harmonique permet d'écrire , désignant la distance de à un point quelconque de . Or, d'après la formule de Gauss-Bonnet pour un point extérieur, la deuxième intégrale du membre de droite s'annule, de sorte qu'on a . Cette formule est due à Michel Chasles (1793-1880). Elle montre que toute fonction harmonique peut se représenter par un potentiel de simple couche sur l'une quelconque de ses surfaces équipotentielles const. Dans le cas particulier où il s'agit d'un potentiel newtonien d'un corps solide situé à l'intérieur de , le théorème de Chasles indique qu'il est toujours possible de remplacer le corps solide par une simple couche de densité surfacique adéquate épousant l'une de ses surfaces équipotentielles extérieures sans changer le potentiel à l'extérieur de celle-ci. Ce théorème est à rapprocher du théorème d'unicité de Stokes. * Portail de la géodésie et de la géophysique * Portail de la physique * Portail des mathématiques * Portail de l’astronomie (fr)
dbo:namedAfter
dbo:wikiPageID
  • 966043 (xsd:integer)
dbo:wikiPageLength
  • 2149 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 96961621 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • Le théorème de Chasles est un théorème de géodésie physique. Considérons une fonction harmonique à l'extérieur d'une surface . Admettons en outre que soit une surface équipotentielle. Ainsi, sur cette surface on a , la quantité étant une constante arbitraire. Pour un point extérieur à , la représentation intégrale d'une fonction harmonique permet d'écrire , désignant la distance de à un point quelconque de . Or, d'après la formule de Gauss-Bonnet pour un point extérieur, la deuxième intégrale du membre de droite s'annule, de sorte qu'on a . (fr)
  • Le théorème de Chasles est un théorème de géodésie physique. Considérons une fonction harmonique à l'extérieur d'une surface . Admettons en outre que soit une surface équipotentielle. Ainsi, sur cette surface on a , la quantité étant une constante arbitraire. Pour un point extérieur à , la représentation intégrale d'une fonction harmonique permet d'écrire , désignant la distance de à un point quelconque de . Or, d'après la formule de Gauss-Bonnet pour un point extérieur, la deuxième intégrale du membre de droite s'annule, de sorte qu'on a . (fr)
rdfs:label
  • Teorema de Chasles (es)
  • Théorème de Chasles (fr)
  • Teorema de Chasles (es)
  • Théorème de Chasles (fr)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of