Le théorème de Budan s'énonce ainsi : Étant donnée une équation polynomiale p(x) = 0 de degré m, si on substitue à x, x+a et x+b, pour deux nombres a et b (a < b) et si, après chaque substitution, on compte les variations de signe que présente la suite des coefficients de p(x+a) et p(x+b), alors le nombre des racines de p(x) = 0 comprises entre a et b ne surpasse jamais celui des variations perdues de p(x+a) à p(x+b), et, quand il est moindre, la différence est toujours un nombre pair. Ce théorème date de 1807 et est à l'origine de la méthode de Budan-Fourier.

Property Value
dbo:abstract
  • Le théorème de Budan s'énonce ainsi : Étant donnée une équation polynomiale p(x) = 0 de degré m, si on substitue à x, x+a et x+b, pour deux nombres a et b (a < b) et si, après chaque substitution, on compte les variations de signe que présente la suite des coefficients de p(x+a) et p(x+b), alors le nombre des racines de p(x) = 0 comprises entre a et b ne surpasse jamais celui des variations perdues de p(x+a) à p(x+b), et, quand il est moindre, la différence est toujours un nombre pair. Ce théorème date de 1807 et est à l'origine de la méthode de Budan-Fourier. (fr)
  • Le théorème de Budan s'énonce ainsi : Étant donnée une équation polynomiale p(x) = 0 de degré m, si on substitue à x, x+a et x+b, pour deux nombres a et b (a < b) et si, après chaque substitution, on compte les variations de signe que présente la suite des coefficients de p(x+a) et p(x+b), alors le nombre des racines de p(x) = 0 comprises entre a et b ne surpasse jamais celui des variations perdues de p(x+a) à p(x+b), et, quand il est moindre, la différence est toujours un nombre pair. Ce théorème date de 1807 et est à l'origine de la méthode de Budan-Fourier. (fr)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 1670681 (xsd:integer)
dbo:wikiPageLength
  • 1513 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 163952732 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • Le théorème de Budan s'énonce ainsi : Étant donnée une équation polynomiale p(x) = 0 de degré m, si on substitue à x, x+a et x+b, pour deux nombres a et b (a < b) et si, après chaque substitution, on compte les variations de signe que présente la suite des coefficients de p(x+a) et p(x+b), alors le nombre des racines de p(x) = 0 comprises entre a et b ne surpasse jamais celui des variations perdues de p(x+a) à p(x+b), et, quand il est moindre, la différence est toujours un nombre pair. Ce théorème date de 1807 et est à l'origine de la méthode de Budan-Fourier. (fr)
  • Le théorème de Budan s'énonce ainsi : Étant donnée une équation polynomiale p(x) = 0 de degré m, si on substitue à x, x+a et x+b, pour deux nombres a et b (a < b) et si, après chaque substitution, on compte les variations de signe que présente la suite des coefficients de p(x+a) et p(x+b), alors le nombre des racines de p(x) = 0 comprises entre a et b ne surpasse jamais celui des variations perdues de p(x+a) à p(x+b), et, quand il est moindre, la différence est toujours un nombre pair. Ce théorème date de 1807 et est à l'origine de la méthode de Budan-Fourier. (fr)
rdfs:label
  • Théorème de Budan (fr)
  • Théorème de Budan (fr)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of