La spallation des rayons cosmiques est un mécanisme de nucléosynthèse où la grande énergie cinétique des rayons cosmiques (essentiellement des protons) brise des nucléides croisant leur trajectoire et en forment de nouveaux (généralement de masse atomique plus petite). L'énigme se résolut par la compréhension de la spallation dans le vide interstellaire, où des rayons cosmiques de haute énergie, percutant et brisant en nucléides plus petits des noyaux d'atomes de carbone, d'azote et d'oxygène, donnent ainsi naissance aux éléments Li, Be et B. Exemple : formation du béryllium 10 (10Be) :

Property Value
dbo:abstract
  • La spallation des rayons cosmiques est un mécanisme de nucléosynthèse où la grande énergie cinétique des rayons cosmiques (essentiellement des protons) brise des nucléides croisant leur trajectoire et en forment de nouveaux (généralement de masse atomique plus petite). La présence des éléments légers tels que le lithium (dont un petit pourcentage s'est formé au cours de la nucléosynthèse primordiale), le béryllium et le bore, fut longtemps une énigme pour les astrophysiciens étant donné que la nucléosynthèse primordiale et les réactions nucléaires du cœur des étoiles sont plus propices à les détruire qu'à les synthétiser. L'énigme se résolut par la compréhension de la spallation dans le vide interstellaire, où des rayons cosmiques de haute énergie, percutant et brisant en nucléides plus petits des noyaux d'atomes de carbone, d'azote et d'oxygène, donnent ainsi naissance aux éléments Li, Be et B. Exemple : formation du béryllium 10 (10Be) : pRayon cosmique produits de spallation du rayon cosmique incident. La spallation des rayons cosmiques est également responsable de la formation : * dans l'atmosphère terrestre, de quelques isotopes tels que le béryllium 10. * à la surface de la Terre, de quelques isotopes tels que l'aluminium 26 ou le carbone 14 par exemple. Ce phénomène est exploité depuis la fin du XXe siècle en recherche scientifique pour, à partir des variations de proportion d'isotope constatées en béryllium 10 ou carbone 14, identifier, dater ou apparier différentes couches de stratigraphie terrestre ou glaciaire (par exemple à Sermilik (sud-est du Groenland)), ou encore lire les variations d'intensité de l'activité solaire ou du champ magnétique terrestre dans le temps. (fr)
  • La spallation des rayons cosmiques est un mécanisme de nucléosynthèse où la grande énergie cinétique des rayons cosmiques (essentiellement des protons) brise des nucléides croisant leur trajectoire et en forment de nouveaux (généralement de masse atomique plus petite). La présence des éléments légers tels que le lithium (dont un petit pourcentage s'est formé au cours de la nucléosynthèse primordiale), le béryllium et le bore, fut longtemps une énigme pour les astrophysiciens étant donné que la nucléosynthèse primordiale et les réactions nucléaires du cœur des étoiles sont plus propices à les détruire qu'à les synthétiser. L'énigme se résolut par la compréhension de la spallation dans le vide interstellaire, où des rayons cosmiques de haute énergie, percutant et brisant en nucléides plus petits des noyaux d'atomes de carbone, d'azote et d'oxygène, donnent ainsi naissance aux éléments Li, Be et B. Exemple : formation du béryllium 10 (10Be) : pRayon cosmique produits de spallation du rayon cosmique incident. La spallation des rayons cosmiques est également responsable de la formation : * dans l'atmosphère terrestre, de quelques isotopes tels que le béryllium 10. * à la surface de la Terre, de quelques isotopes tels que l'aluminium 26 ou le carbone 14 par exemple. Ce phénomène est exploité depuis la fin du XXe siècle en recherche scientifique pour, à partir des variations de proportion d'isotope constatées en béryllium 10 ou carbone 14, identifier, dater ou apparier différentes couches de stratigraphie terrestre ou glaciaire (par exemple à Sermilik (sud-est du Groenland)), ou encore lire les variations d'intensité de l'activité solaire ou du champ magnétique terrestre dans le temps. (fr)
dbo:wikiPageID
  • 6724981 (xsd:integer)
dbo:wikiPageLength
  • 2690 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 187937065 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • La spallation des rayons cosmiques est un mécanisme de nucléosynthèse où la grande énergie cinétique des rayons cosmiques (essentiellement des protons) brise des nucléides croisant leur trajectoire et en forment de nouveaux (généralement de masse atomique plus petite). L'énigme se résolut par la compréhension de la spallation dans le vide interstellaire, où des rayons cosmiques de haute énergie, percutant et brisant en nucléides plus petits des noyaux d'atomes de carbone, d'azote et d'oxygène, donnent ainsi naissance aux éléments Li, Be et B. Exemple : formation du béryllium 10 (10Be) : (fr)
  • La spallation des rayons cosmiques est un mécanisme de nucléosynthèse où la grande énergie cinétique des rayons cosmiques (essentiellement des protons) brise des nucléides croisant leur trajectoire et en forment de nouveaux (généralement de masse atomique plus petite). L'énigme se résolut par la compréhension de la spallation dans le vide interstellaire, où des rayons cosmiques de haute énergie, percutant et brisant en nucléides plus petits des noyaux d'atomes de carbone, d'azote et d'oxygène, donnent ainsi naissance aux éléments Li, Be et B. Exemple : formation du béryllium 10 (10Be) : (fr)
rdfs:label
  • Cosmic ray spallation (en)
  • Espalación de rayos cósmicos (es)
  • Spallation des rayons cosmiques (fr)
  • 宇宙射線散裂 (zh)
  • 宇宙線による核破砕 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of