En théorie des probabilités, un processus arrêté est un processus stochastique qui garde la même valeur à partir d'un instant donné (éventuellement aléatoire). Par exemple, dans la modélisation d'un jeu d'argent, comme une succession de mises à la roulette, ce concept peut rendre compte de la notion d'arrêt au bout d'un certain nombre de parties, ou d'arrêt quand un certain seuil de gain ou de perte a été franchi, sans devoir écrire une modélisation spécifique pour chaque condition d'arrêt, mais en exploitant celle du « jeu de roulette infini » comme cadre général.

Property Value
dbo:abstract
  • En théorie des probabilités, un processus arrêté est un processus stochastique qui garde la même valeur à partir d'un instant donné (éventuellement aléatoire). Par exemple, dans la modélisation d'un jeu d'argent, comme une succession de mises à la roulette, ce concept peut rendre compte de la notion d'arrêt au bout d'un certain nombre de parties, ou d'arrêt quand un certain seuil de gain ou de perte a été franchi, sans devoir écrire une modélisation spécifique pour chaque condition d'arrêt, mais en exploitant celle du « jeu de roulette infini » comme cadre général. (fr)
  • En théorie des probabilités, un processus arrêté est un processus stochastique qui garde la même valeur à partir d'un instant donné (éventuellement aléatoire). Par exemple, dans la modélisation d'un jeu d'argent, comme une succession de mises à la roulette, ce concept peut rendre compte de la notion d'arrêt au bout d'un certain nombre de parties, ou d'arrêt quand un certain seuil de gain ou de perte a été franchi, sans devoir écrire une modélisation spécifique pour chaque condition d'arrêt, mais en exploitant celle du « jeu de roulette infini » comme cadre général. (fr)
dbo:wikiPageID
  • 12626141 (xsd:integer)
dbo:wikiPageLength
  • 1494 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 181989940 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • En théorie des probabilités, un processus arrêté est un processus stochastique qui garde la même valeur à partir d'un instant donné (éventuellement aléatoire). Par exemple, dans la modélisation d'un jeu d'argent, comme une succession de mises à la roulette, ce concept peut rendre compte de la notion d'arrêt au bout d'un certain nombre de parties, ou d'arrêt quand un certain seuil de gain ou de perte a été franchi, sans devoir écrire une modélisation spécifique pour chaque condition d'arrêt, mais en exploitant celle du « jeu de roulette infini » comme cadre général. (fr)
  • En théorie des probabilités, un processus arrêté est un processus stochastique qui garde la même valeur à partir d'un instant donné (éventuellement aléatoire). Par exemple, dans la modélisation d'un jeu d'argent, comme une succession de mises à la roulette, ce concept peut rendre compte de la notion d'arrêt au bout d'un certain nombre de parties, ou d'arrêt quand un certain seuil de gain ou de perte a été franchi, sans devoir écrire une modélisation spécifique pour chaque condition d'arrêt, mais en exploitant celle du « jeu de roulette infini » comme cadre général. (fr)
rdfs:label
  • Gestoppter Prozess (de)
  • Processus arrêté (fr)
  • Gestoppter Prozess (de)
  • Processus arrêté (fr)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of