Property |
Value |
dbo:abstract
|
- En théorie des probabilités, un processus arrêté est un processus stochastique qui garde la même valeur à partir d'un instant donné (éventuellement aléatoire). Par exemple, dans la modélisation d'un jeu d'argent, comme une succession de mises à la roulette, ce concept peut rendre compte de la notion d'arrêt au bout d'un certain nombre de parties, ou d'arrêt quand un certain seuil de gain ou de perte a été franchi, sans devoir écrire une modélisation spécifique pour chaque condition d'arrêt, mais en exploitant celle du « jeu de roulette infini » comme cadre général. (fr)
- En théorie des probabilités, un processus arrêté est un processus stochastique qui garde la même valeur à partir d'un instant donné (éventuellement aléatoire). Par exemple, dans la modélisation d'un jeu d'argent, comme une succession de mises à la roulette, ce concept peut rendre compte de la notion d'arrêt au bout d'un certain nombre de parties, ou d'arrêt quand un certain seuil de gain ou de perte a été franchi, sans devoir écrire une modélisation spécifique pour chaque condition d'arrêt, mais en exploitant celle du « jeu de roulette infini » comme cadre général. (fr)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 1494 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-fr:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- En théorie des probabilités, un processus arrêté est un processus stochastique qui garde la même valeur à partir d'un instant donné (éventuellement aléatoire). Par exemple, dans la modélisation d'un jeu d'argent, comme une succession de mises à la roulette, ce concept peut rendre compte de la notion d'arrêt au bout d'un certain nombre de parties, ou d'arrêt quand un certain seuil de gain ou de perte a été franchi, sans devoir écrire une modélisation spécifique pour chaque condition d'arrêt, mais en exploitant celle du « jeu de roulette infini » comme cadre général. (fr)
- En théorie des probabilités, un processus arrêté est un processus stochastique qui garde la même valeur à partir d'un instant donné (éventuellement aléatoire). Par exemple, dans la modélisation d'un jeu d'argent, comme une succession de mises à la roulette, ce concept peut rendre compte de la notion d'arrêt au bout d'un certain nombre de parties, ou d'arrêt quand un certain seuil de gain ou de perte a été franchi, sans devoir écrire une modélisation spécifique pour chaque condition d'arrêt, mais en exploitant celle du « jeu de roulette infini » comme cadre général. (fr)
|
rdfs:label
|
- Gestoppter Prozess (de)
- Processus arrêté (fr)
- Gestoppter Prozess (de)
- Processus arrêté (fr)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageWikiLink
of | |
is oa:hasTarget
of | |
is foaf:primaryTopic
of | |