À la fin du XIXe siècle on connaît l'équation de Boltzmann qui régit la dynamique du milieu gazeux à l'échelle microscopique et les équations d'Euler et de Navier-Stokes pour le niveau macroscopique. Le passage d'une échelle à l'autre constitue une partie du sixième problème de Hilbert. David Hilbert, auteur des énoncés des problèmes jugés majeurs à la fin du XIXe siècle pose les bases d'une méthode sous forme d'un développement qui porte son nom (1912). Il faudra attendre quelques années pour que Sydney Chapman et David Enskog proposent simultanément et indépendamment en 1916 et 1917 une solution à ce problème. Plus récemment cette méthode a été étendue au cas d'un gaz en déséquilibre thermodynamique, ce dernier aspect étant aujourd'hui encore un domaine de recherche très actif.

Property Value
dbo:abstract
  • À la fin du XIXe siècle on connaît l'équation de Boltzmann qui régit la dynamique du milieu gazeux à l'échelle microscopique et les équations d'Euler et de Navier-Stokes pour le niveau macroscopique. Le passage d'une échelle à l'autre constitue une partie du sixième problème de Hilbert. David Hilbert, auteur des énoncés des problèmes jugés majeurs à la fin du XIXe siècle pose les bases d'une méthode sous forme d'un développement qui porte son nom (1912). Il faudra attendre quelques années pour que Sydney Chapman et David Enskog proposent simultanément et indépendamment en 1916 et 1917 une solution à ce problème. Plus récemment cette méthode a été étendue au cas d'un gaz en déséquilibre thermodynamique, ce dernier aspect étant aujourd'hui encore un domaine de recherche très actif. La méthode de Chapman-Enskog est une méthode de perturbation consistant à définir la solution sous forme de série de fonctions de distribution en fonction d'un « petit paramètre » assimilable au nombre de Knudsen. À l'ordre zéro on retrouve la distribution de Maxwell-Boltzmann et les équations d'Euler. L'ordre un permet de connaître l'expression des flux de chaleur et de quantité de mouvement et celle des coefficients de transport (les coefficients de diffusion par gradients de concentration, de pression et de température, les viscosités dynamique et volumique, la conductivité) à partir des potentiels d'interaction moléculaires. Cette approche permet de retrouver les équations de Navier-Stokes et de justifier la diffusion par gradient thermique, inconnue à l'époque où sont publiés les travaux de Chapman et d'Enskog. Cette méthode permettra par la suite de calculer tous ces coefficients à partir de la connaissance de l'un d'entre eux en reconstituant à partir d'une mesure (généralement la viscosité) un potentiel d'interaction tel que le potentiel de Lennard-Jones. Harold Grad a proposé une approche alternative consistant à chercher la solution par la méthode des moments de la fonction de distribution (1949). L'équation de Boltzmann est multipliée par ( est la vitesse microscopique de l'équation de Boltzmann et le produit tensoriel) et intégrée en vitesse. Dans ce type de méthode l'équation portant sur le ne moment fait apparaître le (n+1)e. Il faut donc faire une hypothèse pour "fermer" le système. Grad suppose la solution exprimée par une série tronquée de polynômes d'Hermite. David Levermore a plus récemment (1996) proposé une fermeture qui fait appel à une propriété générale : la solution maximise l'entropie du système de fermions que sont les particules du milieu. Des codes de calcul[Lesquels ?] basés sur ces méthodes sont restés dans le domaine du laboratoire car n'apportant pas un gain notable en termes de domaine de validité (en termes de nombre de Knudsen) par rapport aux codes standard résolvant les équations de Navier-Stokes, lesquels ont fait l'objet de développements considérables. La méthode de Chapman-Enskog a été étendue à l'équation de Boltzmann-Chernikov en relativité générale pour les applications en cosmologie. (fr)
  • À la fin du XIXe siècle on connaît l'équation de Boltzmann qui régit la dynamique du milieu gazeux à l'échelle microscopique et les équations d'Euler et de Navier-Stokes pour le niveau macroscopique. Le passage d'une échelle à l'autre constitue une partie du sixième problème de Hilbert. David Hilbert, auteur des énoncés des problèmes jugés majeurs à la fin du XIXe siècle pose les bases d'une méthode sous forme d'un développement qui porte son nom (1912). Il faudra attendre quelques années pour que Sydney Chapman et David Enskog proposent simultanément et indépendamment en 1916 et 1917 une solution à ce problème. Plus récemment cette méthode a été étendue au cas d'un gaz en déséquilibre thermodynamique, ce dernier aspect étant aujourd'hui encore un domaine de recherche très actif. La méthode de Chapman-Enskog est une méthode de perturbation consistant à définir la solution sous forme de série de fonctions de distribution en fonction d'un « petit paramètre » assimilable au nombre de Knudsen. À l'ordre zéro on retrouve la distribution de Maxwell-Boltzmann et les équations d'Euler. L'ordre un permet de connaître l'expression des flux de chaleur et de quantité de mouvement et celle des coefficients de transport (les coefficients de diffusion par gradients de concentration, de pression et de température, les viscosités dynamique et volumique, la conductivité) à partir des potentiels d'interaction moléculaires. Cette approche permet de retrouver les équations de Navier-Stokes et de justifier la diffusion par gradient thermique, inconnue à l'époque où sont publiés les travaux de Chapman et d'Enskog. Cette méthode permettra par la suite de calculer tous ces coefficients à partir de la connaissance de l'un d'entre eux en reconstituant à partir d'une mesure (généralement la viscosité) un potentiel d'interaction tel que le potentiel de Lennard-Jones. Harold Grad a proposé une approche alternative consistant à chercher la solution par la méthode des moments de la fonction de distribution (1949). L'équation de Boltzmann est multipliée par ( est la vitesse microscopique de l'équation de Boltzmann et le produit tensoriel) et intégrée en vitesse. Dans ce type de méthode l'équation portant sur le ne moment fait apparaître le (n+1)e. Il faut donc faire une hypothèse pour "fermer" le système. Grad suppose la solution exprimée par une série tronquée de polynômes d'Hermite. David Levermore a plus récemment (1996) proposé une fermeture qui fait appel à une propriété générale : la solution maximise l'entropie du système de fermions que sont les particules du milieu. Des codes de calcul[Lesquels ?] basés sur ces méthodes sont restés dans le domaine du laboratoire car n'apportant pas un gain notable en termes de domaine de validité (en termes de nombre de Knudsen) par rapport aux codes standard résolvant les équations de Navier-Stokes, lesquels ont fait l'objet de développements considérables. La méthode de Chapman-Enskog a été étendue à l'équation de Boltzmann-Chernikov en relativité générale pour les applications en cosmologie. (fr)
dbo:namedAfter
dbo:thumbnail
dbo:wikiPageID
  • 10110746 (xsd:integer)
dbo:wikiPageLength
  • 28019 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 189471668 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • À la fin du XIXe siècle on connaît l'équation de Boltzmann qui régit la dynamique du milieu gazeux à l'échelle microscopique et les équations d'Euler et de Navier-Stokes pour le niveau macroscopique. Le passage d'une échelle à l'autre constitue une partie du sixième problème de Hilbert. David Hilbert, auteur des énoncés des problèmes jugés majeurs à la fin du XIXe siècle pose les bases d'une méthode sous forme d'un développement qui porte son nom (1912). Il faudra attendre quelques années pour que Sydney Chapman et David Enskog proposent simultanément et indépendamment en 1916 et 1917 une solution à ce problème. Plus récemment cette méthode a été étendue au cas d'un gaz en déséquilibre thermodynamique, ce dernier aspect étant aujourd'hui encore un domaine de recherche très actif. (fr)
  • À la fin du XIXe siècle on connaît l'équation de Boltzmann qui régit la dynamique du milieu gazeux à l'échelle microscopique et les équations d'Euler et de Navier-Stokes pour le niveau macroscopique. Le passage d'une échelle à l'autre constitue une partie du sixième problème de Hilbert. David Hilbert, auteur des énoncés des problèmes jugés majeurs à la fin du XIXe siècle pose les bases d'une méthode sous forme d'un développement qui porte son nom (1912). Il faudra attendre quelques années pour que Sydney Chapman et David Enskog proposent simultanément et indépendamment en 1916 et 1917 une solution à ce problème. Plus récemment cette méthode a été étendue au cas d'un gaz en déséquilibre thermodynamique, ce dernier aspect étant aujourd'hui encore un domaine de recherche très actif. (fr)
rdfs:label
  • Méthode de Chapman-Enskog (fr)
  • Teoria de Chapman-Enskog (pt)
  • Méthode de Chapman-Enskog (fr)
  • Teoria de Chapman-Enskog (pt)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is prop-fr:renomméPour of
is oa:hasTarget of
is foaf:primaryTopic of