Property |
Value |
dbo:abstract
|
- En théorie des graphes, un graphe orienté peut contenir des circuits, c'est-à-dire des chemins qui reviennent sur leur point de départ. Dans certaines applications, ces circuits sont indésirables, et on cherche à les éliminer pour obtenir un graphe orienté acyclique (souvent abrégé en DAG). Une façon de procéder est de simplement supprimer certains arcs du graphe pour couper les circuits. Un ensemble d'arcs de retour, ou coupe-cycles d'arcs communément appelé par son nom anglais un feedback arc set (FAS) est un ensemble d'arcs qui, lorsqu'il est supprimé du graphe, le transforme en graphe acyclique. Dit d'une autre manière, c'est un ensemble contenant au moins un arc de chaque circuit dans le graphe. (fr)
- En théorie des graphes, un graphe orienté peut contenir des circuits, c'est-à-dire des chemins qui reviennent sur leur point de départ. Dans certaines applications, ces circuits sont indésirables, et on cherche à les éliminer pour obtenir un graphe orienté acyclique (souvent abrégé en DAG). Une façon de procéder est de simplement supprimer certains arcs du graphe pour couper les circuits. Un ensemble d'arcs de retour, ou coupe-cycles d'arcs communément appelé par son nom anglais un feedback arc set (FAS) est un ensemble d'arcs qui, lorsqu'il est supprimé du graphe, le transforme en graphe acyclique. Dit d'une autre manière, c'est un ensemble contenant au moins un arc de chaque circuit dans le graphe. (fr)
|
dbo:isPartOf
| |
dbo:thumbnail
| |
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 11218 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-fr:auteur
|
- Viggo Kann (fr)
- Viggo Kann (fr)
|
prop-fr:date
| |
prop-fr:langue
| |
prop-fr:site
|
- A compendium of NP optimization problems (fr)
- A compendium of NP optimization problems (fr)
|
prop-fr:titre
|
- Minimum feedback arc set (fr)
- Minimum feedback arc set (fr)
|
prop-fr:url
| |
prop-fr:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- En théorie des graphes, un graphe orienté peut contenir des circuits, c'est-à-dire des chemins qui reviennent sur leur point de départ. Dans certaines applications, ces circuits sont indésirables, et on cherche à les éliminer pour obtenir un graphe orienté acyclique (souvent abrégé en DAG). Une façon de procéder est de simplement supprimer certains arcs du graphe pour couper les circuits. Un ensemble d'arcs de retour, ou coupe-cycles d'arcs communément appelé par son nom anglais un feedback arc set (FAS) est un ensemble d'arcs qui, lorsqu'il est supprimé du graphe, le transforme en graphe acyclique. Dit d'une autre manière, c'est un ensemble contenant au moins un arc de chaque circuit dans le graphe. (fr)
- En théorie des graphes, un graphe orienté peut contenir des circuits, c'est-à-dire des chemins qui reviennent sur leur point de départ. Dans certaines applications, ces circuits sont indésirables, et on cherche à les éliminer pour obtenir un graphe orienté acyclique (souvent abrégé en DAG). Une façon de procéder est de simplement supprimer certains arcs du graphe pour couper les circuits. Un ensemble d'arcs de retour, ou coupe-cycles d'arcs communément appelé par son nom anglais un feedback arc set (FAS) est un ensemble d'arcs qui, lorsqu'il est supprimé du graphe, le transforme en graphe acyclique. Dit d'une autre manière, c'est un ensemble contenant au moins un arc de chaque circuit dans le graphe. (fr)
|
rdfs:label
|
- Conjunto de arcos de realimentação (pt)
- Feedback arc set (en)
- Feedback arc set (fr)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:depiction
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageWikiLink
of | |
is oa:hasTarget
of | |
is foaf:primaryTopic
of | |