L'empilement de carrés dans un carré est un problème d'empilement bidimensionnel dont l'objectif est d'empiler des carrés unités (côté 1) identiques de nombre n dans le carré le plus petit possible de côté a. Si a est un entier, la réponse est a2. La plus petite valeur de a qui permet d'empiler des carrés de n unités est connue lorsque n est un carré parfait (auquel cas il est √n), ainsi que pour n = 2, 3, 5, 6, 7, 8, 10 , 14, 15, 24 et 35. Le tableau ci-dessous indique la valeur optimale de a pour n ≤ 10.

Property Value
dbo:abstract
  • L'empilement de carrés dans un carré est un problème d'empilement bidimensionnel dont l'objectif est d'empiler des carrés unités (côté 1) identiques de nombre n dans le carré le plus petit possible de côté a. Si a est un entier, la réponse est a2. La plus petite valeur de a qui permet d'empiler des carrés de n unités est connue lorsque n est un carré parfait (auquel cas il est √n), ainsi que pour n = 2, 3, 5, 6, 7, 8, 10 , 14, 15, 24 et 35. Le tableau ci-dessous indique la valeur optimale de a pour n ≤ 10. D'autres résultats qui ne permettent pas d'établir des empilements optimaux exacts sont connus. Par exemple : * S'il est possible d'emballer n2 − 2 carrés unitaires dans un carré du côté a, alors a ≥ n. * L'approche naïve dans laquelle tous les carrés sont parallèles aux axes de coordonnées et sont placés en contact bord à bord laisse un espace perdu de moins de a + 1 dans un carré du côté a. * L'espace gaspillé d'une solution optimale est asymptotiquement o(a7/11) ((ici écrit en petite notation)). * Toutes les solutions doivent gaspiller de l'espace au moins Ω(a1/2) pour certaines valeurs de a * 11 carrés unitaires ne peuvent pas être emballés dans un carré de côté inférieur à . En revanche, l'empilement le plus serré connu de 11 carrés se trouve à l'intérieur d'un carré de longueur approximative de 3,8772. (fr)
  • L'empilement de carrés dans un carré est un problème d'empilement bidimensionnel dont l'objectif est d'empiler des carrés unités (côté 1) identiques de nombre n dans le carré le plus petit possible de côté a. Si a est un entier, la réponse est a2. La plus petite valeur de a qui permet d'empiler des carrés de n unités est connue lorsque n est un carré parfait (auquel cas il est √n), ainsi que pour n = 2, 3, 5, 6, 7, 8, 10 , 14, 15, 24 et 35. Le tableau ci-dessous indique la valeur optimale de a pour n ≤ 10. D'autres résultats qui ne permettent pas d'établir des empilements optimaux exacts sont connus. Par exemple : * S'il est possible d'emballer n2 − 2 carrés unitaires dans un carré du côté a, alors a ≥ n. * L'approche naïve dans laquelle tous les carrés sont parallèles aux axes de coordonnées et sont placés en contact bord à bord laisse un espace perdu de moins de a + 1 dans un carré du côté a. * L'espace gaspillé d'une solution optimale est asymptotiquement o(a7/11) ((ici écrit en petite notation)). * Toutes les solutions doivent gaspiller de l'espace au moins Ω(a1/2) pour certaines valeurs de a * 11 carrés unitaires ne peuvent pas être emballés dans un carré de côté inférieur à . En revanche, l'empilement le plus serré connu de 11 carrés se trouve à l'intérieur d'un carré de longueur approximative de 3,8772. (fr)
dbo:thumbnail
dbo:wikiPageID
  • 11978935 (xsd:integer)
dbo:wikiPageLength
  • 4707 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 179307543 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • L'empilement de carrés dans un carré est un problème d'empilement bidimensionnel dont l'objectif est d'empiler des carrés unités (côté 1) identiques de nombre n dans le carré le plus petit possible de côté a. Si a est un entier, la réponse est a2. La plus petite valeur de a qui permet d'empiler des carrés de n unités est connue lorsque n est un carré parfait (auquel cas il est √n), ainsi que pour n = 2, 3, 5, 6, 7, 8, 10 , 14, 15, 24 et 35. Le tableau ci-dessous indique la valeur optimale de a pour n ≤ 10. (fr)
  • L'empilement de carrés dans un carré est un problème d'empilement bidimensionnel dont l'objectif est d'empiler des carrés unités (côté 1) identiques de nombre n dans le carré le plus petit possible de côté a. Si a est un entier, la réponse est a2. La plus petite valeur de a qui permet d'empiler des carrés de n unités est connue lorsque n est un carré parfait (auquel cas il est √n), ainsi que pour n = 2, 3, 5, 6, 7, 8, 10 , 14, 15, 24 et 35. Le tableau ci-dessous indique la valeur optimale de a pour n ≤ 10. (fr)
rdfs:label
  • Empilement de carrés dans un carré (fr)
  • Square packing in a square (en)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of