Property |
Value |
dbo:abstract
|
- En mathématiques, et plus particulièrement en théorie des graphes, le critère de planarité de Whitney est une caractérisation, en théorie des matroïdes, des graphes planaires ; critère nommée d'après Hassler Whitney. Il affirme qu'un graphe G est planaire si et seulement si son matroïde graphique est également cographique (c'est-à-dire qu'il est le matroïde dual d'un autre matroïde graphique). En termes de théorie des graphes pures, ce critère énonce comme suit: Un graphe est planaire si et seulement s'il existe un autre graphe (« dual ») et une correspondance bijective entre et telle qu'un sous-ensemble de forme un arbre couvrant de si et seulement si les arêtes correspondantes au sous-ensemble complémentaire forment un arbre couvrant de . (fr)
- En mathématiques, et plus particulièrement en théorie des graphes, le critère de planarité de Whitney est une caractérisation, en théorie des matroïdes, des graphes planaires ; critère nommée d'après Hassler Whitney. Il affirme qu'un graphe G est planaire si et seulement si son matroïde graphique est également cographique (c'est-à-dire qu'il est le matroïde dual d'un autre matroïde graphique). En termes de théorie des graphes pures, ce critère énonce comme suit: Un graphe est planaire si et seulement s'il existe un autre graphe (« dual ») et une correspondance bijective entre et telle qu'un sous-ensemble de forme un arbre couvrant de si et seulement si les arêtes correspondantes au sous-ensemble complémentaire forment un arbre couvrant de . (fr)
|
dbo:namedAfter
| |
dbo:thumbnail
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 4585 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-fr:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- En mathématiques, et plus particulièrement en théorie des graphes, le critère de planarité de Whitney est une caractérisation, en théorie des matroïdes, des graphes planaires ; critère nommée d'après Hassler Whitney. Il affirme qu'un graphe G est planaire si et seulement si son matroïde graphique est également cographique (c'est-à-dire qu'il est le matroïde dual d'un autre matroïde graphique). En termes de théorie des graphes pures, ce critère énonce comme suit: (fr)
- En mathématiques, et plus particulièrement en théorie des graphes, le critère de planarité de Whitney est une caractérisation, en théorie des matroïdes, des graphes planaires ; critère nommée d'après Hassler Whitney. Il affirme qu'un graphe G est planaire si et seulement si son matroïde graphique est également cographique (c'est-à-dire qu'il est le matroïde dual d'un autre matroïde graphique). En termes de théorie des graphes pures, ce critère énonce comme suit: (fr)
|
rdfs:label
|
- Critère de planarité de Whitney (fr)
- Whitney's planarity criterion (en)
- Критерий планарности Уитни (ru)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:depiction
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageWikiLink
of | |
is oa:hasTarget
of | |
is foaf:primaryTopic
of | |