Le cercle de Conway d'un triangle est le cercle passant par les extrémités des segments obtenus en prolongeant chaque côté du triangle, à partir de chaque sommet, d'une longueur égale à la longueur du côté opposé à ce sommet (voir figure). Démontrer que les six extrémités sont bien cocycliques ne nécessite que des outils de mathématiques élémentaires. Ce cercle est nommé ainsi en hommage au mathématicien John Horton Conway que l'on voit arborer un T-shirt illustrant cette propriété.

Property Value
dbo:abstract
  • Le cercle de Conway d'un triangle est le cercle passant par les extrémités des segments obtenus en prolongeant chaque côté du triangle, à partir de chaque sommet, d'une longueur égale à la longueur du côté opposé à ce sommet (voir figure). Démontrer que les six extrémités sont bien cocycliques ne nécessite que des outils de mathématiques élémentaires. Ce cercle est nommé ainsi en hommage au mathématicien John Horton Conway que l'on voit arborer un T-shirt illustrant cette propriété. (fr)
  • Le cercle de Conway d'un triangle est le cercle passant par les extrémités des segments obtenus en prolongeant chaque côté du triangle, à partir de chaque sommet, d'une longueur égale à la longueur du côté opposé à ce sommet (voir figure). Démontrer que les six extrémités sont bien cocycliques ne nécessite que des outils de mathématiques élémentaires. Ce cercle est nommé ainsi en hommage au mathématicien John Horton Conway que l'on voit arborer un T-shirt illustrant cette propriété. (fr)
dbo:thumbnail
dbo:wikiPageID
  • 13318943 (xsd:integer)
dbo:wikiPageLength
  • 8074 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 185305618 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:auteur
  • Darij Grinberg et Eric W. Weisstein (fr)
  • Darij Grinberg et Eric W. Weisstein (fr)
prop-fr:nomUrl
  • ConwayCircle (fr)
  • ConwayCircle (fr)
prop-fr:titre
  • Conway circle (fr)
  • Conway circle (fr)
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • Le cercle de Conway d'un triangle est le cercle passant par les extrémités des segments obtenus en prolongeant chaque côté du triangle, à partir de chaque sommet, d'une longueur égale à la longueur du côté opposé à ce sommet (voir figure). Démontrer que les six extrémités sont bien cocycliques ne nécessite que des outils de mathématiques élémentaires. Ce cercle est nommé ainsi en hommage au mathématicien John Horton Conway que l'on voit arborer un T-shirt illustrant cette propriété. (fr)
  • Le cercle de Conway d'un triangle est le cercle passant par les extrémités des segments obtenus en prolongeant chaque côté du triangle, à partir de chaque sommet, d'une longueur égale à la longueur du côté opposé à ce sommet (voir figure). Démontrer que les six extrémités sont bien cocycliques ne nécessite que des outils de mathématiques élémentaires. Ce cercle est nommé ainsi en hommage au mathématicien John Horton Conway que l'on voit arborer un T-shirt illustrant cette propriété. (fr)
rdfs:label
  • Cercle de Conway (fr)
  • Cercle de Conway (fr)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of