Property |
Value |
dbo:abstract
|
- L'analyse fractale est la modélisation de données dont la fractalité est la propriété inhérente. La notion-clé est celle de fractal qui remonte à Benoît Mandelbrot qui l'avait introduite comme description mathématique des objets râpeux. L'analyse fractale s'applique aux systèmes physiques qui se distinguent par une similarité de comportements au travers d'une multitude d'échelles ou, dans des cas les plus prononcés, par l'autosimilarité où cette similarité est conservée au travers d'une infinitude d'échelles. L'analyse fractale se voit comme une stratégie de modélisation pluridisciplinaire qui est issue de la physique théorique, notamment de la . La motivation pour cette nouvelle stratégie de modélisation se trouve dans la nature elle-même : Dans de nombreux systèmes biologiques on trouve des structures arborescentes et bifurquantes comme des arbres, des fougères, des colimaçons, le système vasculaire, etc. Tous ces systèmes se distinguent par une invariance d’échelle et se comportent donc quasiment comme des systèmes auto-similaires. Est-ce par souci d’optimisation qu’une telle symétrie est retenue par la nature ? Quels sont les comportements dynamiques et acoustiques de tels systèmes auto-similaires ? Afin de donner une réponse il faut tout d’abord comprendre le rôle de l’auto-similarité dans les comportements physiques. La modélisation de ce rôle est un des objectifs principaux de l'analyse fractale. (fr)
- L'analyse fractale est la modélisation de données dont la fractalité est la propriété inhérente. La notion-clé est celle de fractal qui remonte à Benoît Mandelbrot qui l'avait introduite comme description mathématique des objets râpeux. L'analyse fractale s'applique aux systèmes physiques qui se distinguent par une similarité de comportements au travers d'une multitude d'échelles ou, dans des cas les plus prononcés, par l'autosimilarité où cette similarité est conservée au travers d'une infinitude d'échelles. L'analyse fractale se voit comme une stratégie de modélisation pluridisciplinaire qui est issue de la physique théorique, notamment de la . La motivation pour cette nouvelle stratégie de modélisation se trouve dans la nature elle-même : Dans de nombreux systèmes biologiques on trouve des structures arborescentes et bifurquantes comme des arbres, des fougères, des colimaçons, le système vasculaire, etc. Tous ces systèmes se distinguent par une invariance d’échelle et se comportent donc quasiment comme des systèmes auto-similaires. Est-ce par souci d’optimisation qu’une telle symétrie est retenue par la nature ? Quels sont les comportements dynamiques et acoustiques de tels systèmes auto-similaires ? Afin de donner une réponse il faut tout d’abord comprendre le rôle de l’auto-similarité dans les comportements physiques. La modélisation de ce rôle est un des objectifs principaux de l'analyse fractale. (fr)
|
dbo:thumbnail
| |
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 2512 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-fr:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- L'analyse fractale est la modélisation de données dont la fractalité est la propriété inhérente. La notion-clé est celle de fractal qui remonte à Benoît Mandelbrot qui l'avait introduite comme description mathématique des objets râpeux. L'analyse fractale s'applique aux systèmes physiques qui se distinguent par une similarité de comportements au travers d'une multitude d'échelles ou, dans des cas les plus prononcés, par l'autosimilarité où cette similarité est conservée au travers d'une infinitude d'échelles. L'analyse fractale se voit comme une stratégie de modélisation pluridisciplinaire qui est issue de la physique théorique, notamment de la . La motivation pour cette nouvelle stratégie de modélisation se trouve dans la nature elle-même : Dans de nombreux systèmes biologiques on trouve (fr)
- L'analyse fractale est la modélisation de données dont la fractalité est la propriété inhérente. La notion-clé est celle de fractal qui remonte à Benoît Mandelbrot qui l'avait introduite comme description mathématique des objets râpeux. L'analyse fractale s'applique aux systèmes physiques qui se distinguent par une similarité de comportements au travers d'une multitude d'échelles ou, dans des cas les plus prononcés, par l'autosimilarité où cette similarité est conservée au travers d'une infinitude d'échelles. L'analyse fractale se voit comme une stratégie de modélisation pluridisciplinaire qui est issue de la physique théorique, notamment de la . La motivation pour cette nouvelle stratégie de modélisation se trouve dans la nature elle-même : Dans de nombreux systèmes biologiques on trouve (fr)
|
rdfs:label
|
- Analyse fractale (fr)
- Fractal analysis (en)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:depiction
| |
foaf:isPrimaryTopicOf
| |
is oa:hasTarget
of | |
is foaf:primaryTopic
of | |